

Single Variable Calculus: Integration Basics

Abstract

This is a simple tutorial on how to generate antiderivatives. We emphasize using the differential dx as a function, in order to make the classic techniques (substitution, integration by parts) more intuitive. Instead of drilling arduous trigonometric substitutions, we work with Euler's formula. The general theme is to emphasize **pattern recognition** over rote memorization.

Though not absolutely required, some familiarity with implicit differentiation may be helpful.

In this writeup, $\log x$ denotes the natural logarithm.

The key to understanding the basic integration techniques is to have a clear idea of where they come from. Recall the chain rule and the product rule:

$$\frac{d(g \circ f)}{dx}(x) = \frac{dg}{dx}(f(x)) \cdot \frac{df}{dx}(x)$$

$$\frac{d(fg)}{dx}(x) = \frac{df}{dx}(x) \cdot g(x) + f(x) \cdot \frac{dg}{dx}(x)$$

Integration via substitution is a matter of recognizing the chain rule in reverse. For example,

$$d(x^2) = 2x \, dx \implies \int 2x \, dx = \int d(x^2) = x^2 + C.$$

Here are a few more:

$$\int \frac{\sin x \, dx}{1 + \cos^2 x} = - \int \frac{d(\cos x)}{1 + \cos^2 x} = - \int \frac{du}{1 + u^2} = - \arctan u + C_0 = \boxed{-\arctan(\cos x) + C}$$

$$\int x^2 e^{x^3} \, dx = \frac{1}{3} \int e^{x^3} \, d(x^3) = \frac{1}{3} \int e^u \, du = \frac{1}{3} e^u + C_0 = \boxed{\frac{1}{3} e^{x^3} + C}$$

$$\int \frac{dx}{x \log x} = \int \frac{1}{\log x} d(\log x) = \int \frac{du}{u} = \log u + C_0 = \boxed{\log \log x + C}$$

$$\int \frac{x^3 \, dx}{\sqrt{1 + x^2}} = \frac{1}{2} \int \frac{x^2 \, d(x^2)}{1 + x^2} = \frac{1}{2} \int \frac{u \, du}{\sqrt{1 + u}} = \frac{1}{2} \int \frac{y^2 - 1}{y} 2y \, dy = \int y^2 - 1 \, dy$$

$$= \frac{1}{3} y(y^2 - 3) + C_0 = \frac{1}{3} \sqrt{1 + u}(u - 2) + C_1 = \boxed{\frac{1}{3} \sqrt{1 + x^2}(x^2 - 2) + C}$$

From this viewpoint, the game is to find instances of $d(f(x)) = f'(x) \, dx$.

Similarly, **integration by parts is a matter of recognizing the product rule in reverse**. For example,

$$\begin{aligned}
\int x^2 \sin x \, dx &= - \int x^2 d(\cos x) = - \int (d(x^2 \cos x) - \cos x d(x^2)) \\
&= C_0 - x^2 \cos x + 2 \int x \cos x \, dx = C_0 - x^2 \cos x + 2 \int x \, d(\sin x) \\
&= C_0 - x^2 \cos x + 2 \int (d(x \sin x) - \sin x \, dx) \\
&= C_1 - x^2 \cos x + 2x \sin x - 2 \int \sin x \, dx \\
&= \boxed{2x \sin x - (x^2 - 2) \cos x + C}
\end{aligned}$$

From this viewpoint, the game is to find instances of $f(dg) = d(fg) - g(df)$.

Finally, **instead of trigonometric substitutions, recall Euler's formula**:

$$e^{i\theta} = \cos \theta + i \sin \theta$$

Since cosine is even and sine is odd, we also get:

$$e^{-i\theta} = \cos \theta - i \sin \theta$$

After a bit of rearranging we get the following helpful identities:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

Slightly more generally,

$$\cos(n\theta) = \frac{e^{in\theta} + e^{-in\theta}}{2}, \quad \sin(n\theta) = \frac{e^{in\theta} - e^{-in\theta}}{2i}.$$

Here is the technique in action (some algebra steps skipped):

$$\begin{aligned}
\int \sin^3 \theta \cos^2 \theta \, d\theta &= -\frac{1}{32i} \int (e^{3i\theta} - e^{-3i\theta} - 3(e^{i\theta} - e^{-i\theta})) (e^{2i\theta} + 2 + e^{-2i\theta}) \, d\theta \\
&= -\frac{1}{32i} \int (e^{5i\theta} - e^{-5i\theta} - (e^{3i\theta} - e^{-3i\theta}) - 2(e^{i\theta} - e^{-i\theta})) \, d\theta \\
&= \frac{1}{16} \int (-\sin(5\theta) + \sin(3\theta) + 2 \sin \theta) \, d\theta \\
&= \boxed{\frac{1}{80} \cos(5\theta) - \frac{1}{48} \cos(3\theta) - \frac{1}{8} \cos \theta + C}
\end{aligned}$$

If you're skilled at algebra but not so much at trigonometry, Euler's formula is your friend.

It is sometimes remarked that differentiation is a skill, whereas integration is an art. Hopefully this writeup communicates that, in certain contexts, **art reduces to applying skill in a thoughtful way**.