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CHAPTER 1

Integers

The word integer comes from the Latin for “intact” or “whole.”

The integers are a collection of numbers — a collection so special that
entire subfields of mathematics are devoted to understanding them.

The integers include the positive integers,
1, 2, 3, 4, 5,
as well as the negative integers,
-1, -2, -3, —4, =5,

There is also an integer called O that is neither positive nor negative,
thought of as a neutral element of the collection.

All together, the postive integers, negative integers, and zero form the
collection of integers, which we will denote Z.

We will also denote the collection of positive integers by Z™.

1.1. Well-Ordering and Induction

A fundamental fact about the integers is:

The Well-Ordering Principle. Every nonempty subset X C
Z" has a least element.

It is logically equivalent to the following:

The Principle of Induction. If a subset X C Z™ satisfies 1 € X
and(neX = n+1e€X),thenX=2Z".
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PROOF. Let X be a subset of Z* satisfying 1 € X and
nexX = n+leX

We proceed by contradiction: suppose X # Z*. Then there is a positive
integer notin X, i.e. Z*\ Xis nonempty. Then Z* \ X has a least element
n. Note that n # 1, since 1 € X. Thus n > 1, and since n is the least
element not in X, n — 1 must be in X. But by assumption, (n —1) +1 =
n € X, contradicting our assumption that n ¢ X. This proves that the
well-ordering principle implies the principle of induction.

Conversely, consider a nonempty subset Y C Z*. If Y has just one
element, then that element is the least element of Y. Now suppose the
well ordering principle is true for all subsets of Z* with n elements,
and suppose Y has n + 1 elements. Take y € Y and let z be the least
element of Y \ y. Then min({y, z}) is the least element of Y. This proves
that the principle of induction implies the well-ordering principle. [

Also relevant is the following variation on the principle of induction:

Strong Induction. If a subset X C Z* satisfies 1 € X and
I,...,neX = n+1eX,

thenX =Z7.

Despite looking like a stricter requirement, strong induction is actually
implied by the principle of induction.

PROOF. LetY C Z* satisfy 1 € Y and
I,...,neY = n+1eY.

Let X C Z* be the set of all positive integers n such that all positive
integers less than or equal to n are in Y. Then 1 € X. Furthermore, if
n € X, thenn + 1 € X. So then by the principle of induction, X = Z*,
which implies Y = Z*. O

A function is said to be defined recursively if it is defined at 1 and if there
exists a rule for finding f(n) in terms of f(1) through f(n—1). By strong
induction, such functions are defined on all of Z™.
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The archetypal example of a recursively defined function is the factorial
function, given by

= 1 ifn=0
" In-(n=1) otherwise

For example, 6! = 720.

Defined in terms of the factorial function are the binomial coefficients,

ny n!
(k) ~ kl(n—k)!

A quick computation shows that

n n n _ n+1
k k+1) \k+1)°
Also note that (3) = () =1.

By these observations, binomial coefficients are always integers.

THEOREM 1.1.1 (Binomial theorem). Let a and b be integers and n a
nonnegative integer. Then

(a+b)" =Y (’;) Q<o

k=0

PROOF. By induction. To see that the claim is true for n = 0, note that

(a+b)°=1= i <O> akpo—k
K .

k=0
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Now assume the claim is true for all integers n < m. Then

(a+b)™" =(a+b)™(a+b)

akbm_k> (a+b) by the inductive step

(

( ak+1bm_k> N ( i @) akbm_w)

(‘“‘ (TQ) akHbM) T ( 5 @ akbmkH) e
<

k=1

m
m Kk m—k+1 m+1 MY e m—k+1 m+1
(k_1>a b >+a +<E (k>ab >+b

k=1

m m kpom—k+1 m+1
(k_1)+(k))a b >+b

By induction, the claim is true for all nonnegative integers n. O

Two consequences of this formula are that

n __ = n _ = k(n
2 _Z(k> and o_k;)(—n (k)
1.2. Divisibility

The integers are closed under addition, subtraction, and multiplication.
However, not every integer quotient forms another integer.

DEFINITION 1.2.1. Let a,b € Z. We say a divides b (or that b is divisible
by a, or that b is a multiple of a, or that a is a factor of b) and write a | b
if there is some ¢ € Z such that b = ac.
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PROPOSITION 1.2.2. Ifx | nand x | m, then for any integers a and b,
x| (an+bm).
PROOF. We have cx = n and dx = m for some integers c and d. So
an + bm = acx + bdx = (ac + bd)x,
which implies x | (an + bm). a

THEOREM 1.2.3 (Division with remainder). If a and b are integers such
that b > 0, then there exist unique integers q and v such that

a=bg+r and 0<r<b.

PROOF. Define the floor of x (denoted |x|) to be the largest integer less
than or equal to x. Noting that

x—1< |[x] <x,
wesetq=|a/b|,r=a—bla/b]|. Now observe that
a/b—1<|a/b] < a/b.
Multiplying through by b yields
a—b<bla/b] <a.
Invert the inequality to obtain
—a < -bla/b] <b—aq,

and then add a:

0<a-—bla/b] <b.
To show q and r are unique, suppose we have q’ and r’ such that
a=bq'+1'. Then0=b(q—q’') + (r—71'),i.e. b divides r —r’. But
since T and r’ are both between 0 and b, their difference is between +b,
so b can divide r — v/ only if r — v’ = 0, so we must have r = 1/, and
q = q’ immediately after. O

1.3. Prime Numbers

The positive integer 1 has just one positive divisor. Every other positive
integer has at least two positive divisors, being divisible by itself and 1.

DEFINITION 1.3.1. A prime number is a positive integer with exactly
two positive divisors. A positive integer with more than two positive
divisors is composite.
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PROPOSITION 1.3.2. Every integer greater than 1 has a prime divisor.

PROOF. By contradiction. Assume there is a positive integer n greater
than 1 with no prime divisors. By the well-ordering principle we may
take n to be the smallest such number. If an integer is prime, it has
a prime divisor (namely, itself). Taking the contrapositive, an integer
with no prime divisors must not be prime. Hence, n is not prime, so
we may writen = abwith1 <a<nand1 <b<n.Becausea <n, a
must have a prime divisor. But any prime divisor of a must also be a
prime divisor of n, contradicting our assumption that n had no prime
divisors. O

THEOREM 1.3.3. There are infinitely many prime numbers.!

PROOF. Consider

Qn=nl+1.
We know Q, has a prime divisor, which we will call g,,. Observe that
dn > n: otherwise, we would have g, < n, hence q, | n!, hence
gn | (Qn —n!) =1, which is impossible. We have thus found a prime
larger than n for any n, so there must be infinitely many primes. [

The gap between primes can be of any length. Indeed, consider
Mm+D+2, m+1I+3, ..., M+ +n+1.

These n consecutive integers are all composite.

1Consequently, 0 has infinitely many divisors, and is also the unique integer satisfying
this condition.
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Coprimality and Factorization

2.1. Greatest Common Divisors

DEFINITION 2.1.1. We say an integer d is a common divisor of a and
bifbothd | aand d| b, and that a common divisor is greatest if any
common divisor ¢ of a and b also divides d. We denote by (a,b) the
greatest common divisor of a and b.

THEOREM 2.1.2 (Bezout’s identity). If a and b are integers not both 0, then
(a,b) is the smallest positive linear combination of a and b, e.g. there are
integers m and n such that

am+bn = (a,b).

PROOF. Consider all integer linear combinations of a and b.

Some of these linear combinations are positive, such as a? 4+ b?, so the
set of all positive linear combinations of a and b is nonempty. By the
well-ordering principle this set has a least element, which we will call
d. Let m and n be such that d = am + bn.

Use division with remainder to obtain a = dq + r. Note that

r=a—dq=a—(am+bn)q=a(l —mq)—b(ng),

i.e. ris a linear combination of a and b. If r were positive then d
wouldn’t be the smallest positive linear combination of a and b, so
r=0,ie. d | a. A nearly identical argument shows that d | b.

Suppose c is a common divisor of a and b. Then there exist integers u
and v such that a = uc and b = vc. But then

d =am+bn =ucm+ven = (um +vnjc,
ie.c|d. Sod = (a,b), and the proof is complete. a
DEFINITION 2.1.3. We say two integers a and b are coprime if (a,b) = 1.

11



12 2. COPRIMALITY AND FACTORIZATION

2.2. The Euclidean Algorithm

Here is a way to compute greatest common divisors.

Euclidean Algorithm. Let ro = a and 11 = b be nonnegative
integers with b # 0. Divide repeatedly to obtain

Tj =Tje1dj41 + Tj42, 0 <mj42 <7yt
forje{0,...,n—=2}%L Ifr, =0, thenrt,_; = (a,b).

We begin by showing that whenever a = bq+r1, we have (a,b) = (b, 7).

PROOE. Ifbothc|aandc|bthenc|a—bq=r. Also,if both ¢ | b and
c|rthenc|bg+r = a. Since the common divisors of a and b are the
same as the common divisors of b and r, we have (a,b) = (b,r). O

Now we show the Euclidean algorithm works.

PROOE. In the situation described above, note that

((l,b) = (b)TZ) =(r2,m3) == (T‘n,],O) =Tn-1.
We hit 0 eventually because the sequence of remainders cannot contain
more than |a| terms. O

2.3. The Fundamental Theorem of Arithmetic
THEOREM 2.3.1. Any positive integer can be uniquely factored into primes.

First we prove existence by contradiction.

PROOF. Letn € Z*. Suppose n were the least positive integer such that
n cannot be factored into primes. Then n cannot itself be prime, son =
abwithl <a<nand1 < b <mn. Thus, a and b admit factorizations
into primes. Combining these yields a prime factorization of n, which
contradicts our assumption that n had no such prime factorization. [

Before proving uniqueness, we need an auxillary fact.

PROPOSITION 2.3.2 (Euclid’s lemma). If a, b, ¢ are positive integers with
(a,b) =1and a|bc, then a|c.

PROOF. Since (a,b) = 1, we may write 1 = am + bn. Multiply by c to
obtain ¢ = amc + bnc. Buta | amcand a | bne,so a | c. O
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Next, we need to show that primes do not decompose as factors.

PROPOSITION 2.3.3. If ay,..., an are integers and p prime,

plai---an = plai forsomei.
PROOF. By induction. If n = 1, then p = a;, hence p | a;. Now
suppose the claim holds for n = m, and consider p = aj--- am+1.
Then by what was just shown, either p | a; -+ am or p | am1. Butif
plaj---am thenp | a; for some i by the inductive hypothesis. O

We are now ready to prove uniqueness of prime factorization.
PROOF. Suppose 1 is the smallest positive integer with

-n:<p1 ps :q1 qt
where the p; and gj are prime. Consider p;. It must divide one of the
qi, let’s say g7 without loss of generality. But q; is prime, and since
p1 # 1, we must have p; = q;. Divide through by p; to obtain

n/pr=p2--Ps=4qz2...qs,
contradicting our assumption that n was the smallest positive integer
with at least two prime factorizations. O






CHAPTER 3

Congruences

The language of congruences was developed by Gauss.

3.1. Basic Properties

DEFINITION 3.1.1. Leta,b € Zand m € Z*. We say a is congruent to b
modulo m and writea =b (mod m)if m| (a —b).

PROPOSITION 3.1.2. Being congruent modulo m is an equivalence relation:
it is reflexive, symmetric, and transitive.

PROOF. Since every number divides 0, we have m | (a — a), thus
a = a (mod m). Suppose a = b (mod m). Then m | (a — b), hence
m| (b—a), hence b = a (mod m). Finally, suppose a =b (mod m)
and b =c¢ (mod m). Thenm | (a —b) and m | (b — ¢), hence

m|((a=b)+(b—c))=(a—c)
hence a = ¢ (mod m). |
One can do arithmetic with congruences.

PROPOSITION 3.1.3. Let a,b,c,d € Zand m € Z*. Ifa =b (mod m)
and ¢ = d (mod m), then

(1) a+c=b+d (mod m),
(2) a—c=b—d (mod m), and
(3) ac =bd (mod m).

PROOF. We have m | (a —b) and m | (¢ — d). Observe that
m|((a=b)+(c—d))=((a+c)—(b+d)),
m|((a=b)—(c—d))=((a—c)—(b—d)),

and

m|(a—b)c+b(c—d) =ac—bc+bc—bd=ac—bd,
from which the result follows. 0

15
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3.2. Sun’s Remainder Theorem

THEOREM 3.2.1. Given integers aq, ..., ax and pairwise coprime integers
ny,..., Ny, the system of congruences

x=a; (mod n;)
has a solution unique modulo N = [T, n.

PROOF. Let N; = N/n;. By pairwise coprimality of the n;, we have
(Ni,ni) = 1. Hence, we can find inverses y; such that Niy; = 1
(mod n;). Consider

x =arNjyj + -+ + axgNyyxk.

Since Njy; = 1 (mod ny), we have a;Njy; = a; (mod n;). Since
ny | Nj for j # 1, all the other terms vanish, so x = a; (mod ny).
Similarly, x = a; (mod n;) foralli e {1,...,k}

To see that the solution is unique modulo N, suppose x and X are both
solutions. Then x — X = 0 (mod n;). Multiplying these congrunces
together, we have x —x = 0 (mod N). O

3.3. Wilson’s Theorem
THEOREM 3.3.1. Ifp is prime, then (p — 1)! = —1 (mod p).

PROOF. Note that the only solutions to x? =1 (mod p) are 1 and —1,
ie. 1and p — 1 are the only equivalence classes that are their own
inverses modulo p. Thus every element from 2 to p — 2 has an inverse
that isn’t itself. Multiplying the (p — 3)/2 classes together gives the
result. O

3.4. Binomials Modulo p

Note that the binomial coefficients are divisible modulo p, for if N =
thenp | plbutp{ (p —r)! and p { v, thus implying p | N. Thus,

(a+b)P =aP +bP (mod p).

_p!l
p—r)ir!



CHAPTER 4

Arithmetic Functions

An arithmetic function is a function from Z* to Z.

One example of an arithmetic function is (n, k) for fixed k.
PROPOSITION 4.0.1. For coprime m and n,
(m) k) (T‘L, k) = (mn) k)

PROOF. We will show (mn, k) | (m,k)(n, k) and (m, k)(n,k) | (mn, k).
Note that (m, k)(n, k) certainly divides both mn and k, and thus also
divides (mn, k). Since we have (m, k) = am+ bk and (n,k) = cn+ dk
by Bezout’s identity,

(m,k)(n,k) =mn-ac+ (b(cm + dk) + amd)k
ie. (mn, k)| (m,k)(n, k). This completes the proof. g

Several other such functions also exist.

4.1. The Mobius Function
DEFINITION 4.1.1. The Mobius function is

1 ifn=1
u(n) =< (=1)* if nis squarefree with s prime factors
0 otherwise

PROPOSITION 4.1.2. For coprime m and n,
p(mn) = p(m)p(n)
i.e. wis multiplicative.

PROOF. By cases. Suppose (without loss of generality) that m = 1.
Then mn = n, and in particular

wmn) =pMm) =1-pn) =pumn) = p(mp(n).

17
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Now suppose m and n are coprime integers both not equal to 1. If
(without loss of generality) m is not squarefree, then mn will also be
not squarefree, wherein

umn) =0=0-p(n) = p(m)u(n).

If m and n are both squarefree, then mn will also be squarefree. Since
m and n are coprime, m having s divisors and n having t divisors
implies mn has s + t divisors. O

THEOREM 4.1.3 (Mo6bius Inversion Formula). If f and g are such that
=) 9(d), nez’
din
then equivalently
Z w(d)f(n/d), nez'.
din
PROOF. Define the convolution of any two arithmetic functions f, g as
(f* g)( Z f(d)g(n/d).
din
Rewriting the sum as

(fxg)(n Zf

ab=n

makes it clear that convolution is both commutative and associative.

Now we will show that
wx1 =25

() — {1 ifn=1

where

0 otherwise
and 1(n) =1 for all n.

Ifn =1, then } 4, nn) = u(1) =1. Sosuppose n # 1 with k prime
factors. All the non-squarefree factors of n vanish in the sum, so

k

> uld) Z(k>H(P1”'Pe)=U1)k=0~

dn
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Now we prove the formula. Observe that
g=0xg=(n*xT)xg=px(Txg)=pxf
and also
f=Ffxd="Fx(ux1)=(Fxp)x1T=gx1

which is what we wanted to show. O

PROPOSITION 4.1.4.
T N u(d)
[[0-ph=)
pin din

PROOF. All the non-squarefree factors of n vanish in the sum on the
right, and multiplying out the product on the left yields the remaining
sum. O

4.2. The Euler Totient
DEFINITION 4.2.1. The Euler totient function is

o) =n]T0-p"

pin
where the product is over all primes dividing n.
PROPOSITION 4.2.2. The ¢ function counts the integers coprime to n.:
) =lk: (k) =T,1 <k <njl.

PROOF. When p | n, the number of positive integers up to n divisible

by p is n/p. Thus, each (1 —p~') term in the product filters out the

integers divisible by p. For example, if n = ]_[;;1 P ]a 7, then there are
n(1—p;') =n—n/p;

integers between 1 and n not divisible by p;. Having a (1 —p; ') term
for each p; results in the product counting the positive integers up to n
coprime to n. O

PROPOSITION 4.2.3. For coprime m and n,

$(mn) = dp(m)p(n),

i.e. ¢ is multiplicative.
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PROOF. Consider the system of congruences
x=a (mod m), x=>b (mod n).

Since m and n are coprime, this system has a unique solution modulo
mn by Sun’s remainder theorem. We claim x is coprime to mn if and
only if a is coprime to m and b is coprime to n.

( = ) : Suppose x is coprime to mn. Then x is coprime to both m
and n. Write x = km + a and x = {n 4+ b. Were a not coprime to m, x
would be not coprime to m (since m is not coprime to m), so a must be
coprime to m. Similarly, b must be coprime to n.

( &) : Now suppose a is coprime to m and b is coprime to n. Again
consider x = km + a and x = fn + b. Were x not coprime to m, then a
would not be coprime to m, so x must be coprime to m. Similarly, x is
coprime to n. Since m and n are coprime, x is coprime to mn.

Since there are ¢(m) numbers coprime to m and ¢(n) numbers coprime
to n, and since each pair (a, b) produces a unique number x coprime
to mn, it follows that there are ¢(m)¢(n) numbers between 1 and mn
coprime to mn. O

PROPOSITION 4.2.4.

n=> (d.

dn

PROOF. We want to show id = 1 * ¢, so by Mdbius inversion it suffices
to show ¢ = pxid. From the definition of ¢ and a previous proposition,

o) =nT0-p") =Y waT = (urid)(n).

pin din

This proves the result. U

PROPOSITION 4.2.5.

PROOF. Since
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we have

@—Zk—z @)=Y 3 o0k,
k=1 k=1 dJk k=1 (=1

where

0 otherwise

[8k]—{1 if 0]k

noting that for { > k we have [ | k] = 0.

Swapping the order of summation,

n

DY DY oIk=) dO ) [LIK=) b0 HJ ,
k= e=1 k=1 =1

14=1

which completes the proof. O

4.3. Euler’s Theorem
THEOREM 4.3.1. If a and n are coprime positive integers, then
a®™ =1 (mod n).

PROOF. For any two integers a and b both coprime to n, their product
is also coprime to n. Said another way,

H b= H ab = a®(m H b (mod n),
(bym)=1 (byn)= (b,n)=1

from which the result follows. O

We note that the case ¢(p) = p — 1 is known as Fermat’s Little Theorem.

4.4. The Sum of Divisors
DEFINITION 4.4.1. The sum of divisors function is
=) d~
din

THEOREM 4.4.2. For coprime m and n,

ox(mn) = ox(m)oy(n).
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PROOF. We'll show that if f and g are multiplicative, then so is f * g.

(fx g)(mn) Z fla

ab=mn

= Z Z flaman)g(bmbn)

Ambm=ma,b,=n

= Z Z f(am)f(an)g(bm)g(bn)

Ambm=manbp=n

:< Z f(am)g(bm)>< Z f(an)g(bn)>
Ambm=m anbn=n

= (fxg)(m) - (f*g)(n)
With this established, note that o = id* % 1. This proves the result.

O



CHAPTER 5

Primitive Roots

5.1. The Order of an Integer
By Euler’s theorem, the set of positive integers x satsifying
a*=1 (modn)
is nonempty.

DEFINITION 5.1.1. The smallest positive integer x satisfying the above
congruence is denoted ord, (a) and is called the order of a modulo n.

PROPOSITION 5.1.2. If a and n are coprime with n > 0, then the positive
integer x is a solution to a® =1 (mod n) if and only if

ordn(a) | x.

PROOF. Suppose ord,, (a) | x. Then x = ord, (a) - k for some k, hence

a* = aordn(a)k — (aordn(a))k — ]k =1 (mod T\.).
Conversely, if a* =1 (mod n), divide to obtain
x =q-ordy(a) +r, 0<r<ordn(a).
Thus a* = a" (mod n). But we must have r = 0, since y = ord,(a)
is the smallest positive integer such that a¥ = 1 (mod n). Hence
ord,(a) | x, as desired. d

So, in particular, ord, (a) | ¢(n).

PROPOSITION 5.1.3. Let a, b, and n be integers with ord(a) and ord(b)
coprime and n. > 0. Then

ordn (a)ord, (b) = ord, (ab).

PROOF. Let ord,(a) = x, ord,(b) =y, and ord,,(ab) = z. Note that
z | xy, since

(ab)¥ = a™¥b*¥ = (a*)¥(b¥)* =1 (mod n).

23
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Since x and y are coprime,
(ab)* =1 = 1= ((ab)*)* = (a*)*b* =b™* = y|xz = ylz

where the third implication follows via Euclid’s lemma. Similarly, x | z.
By coprimality of x and y again, we have xy | z. We may thus conclude
that xy = z. O

5.2. Existence of Primitive Roots

DEFINITION 5.2.1. If r and n are coprime with n > 0 and if
ordn (1) = $(n),
then 1 is called a primitive root modulo n.
THEOREM 5.2.2. Primitive roots exist modulo a prime.
PROOF. By Fermat'’s Little Theorem, the equation
XPT—1=0
has p — 1 solutions modulo p. For any divisor d of p — 1 consider the
factorization
XPT 1= (X4 =11+ X ... 4 xP 179,

The polynomial X¢ — 1 has at most d roots and the other one has at
most p—1—d roots and XP~! —1 has exactly p — 1 roots. Hence, X4 —1
has exactly d roots.

Factor p — 1 into
p — ] = H qeq

For each factor q¢ of p — 1, x9° — 1 has q¢ roots and x9°" — 1 has
q¢ " roots; hence, there are q° — q°~! = ¢(q°) elements x4 for which
ord, (xq) = q°. By the proposition about ord,, (a) respecting multipli-
cation with coprime factors, any product [ |, xq has order p — 1, and
thus is a primitive root. O

THEOREM 5.2.3. Primitive roots exist modulo an odd prime power.
PROOF. Let g be a primitive root modulo p. By the binomial theorem,
(g+p)P ' =g "+ (p—1)g"?p (mod p?),
thus (g +p)P~! # gP~! (mod p?), and in particular either gP~' # 1

(mod p?) or (g+p)P~! # 1 (mod p?). Replace g with g+p if necessary
to ensure that gP~! # 1 (mod p?), i.e.

g ' =1+%kip, ptki.
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Again by the binomial theorem,
P =(1+kip)P =T+kp? pika

So g is now a primitive root modulo p2. Let e > 2 be an integer. Again
by the binomial theorem,

272(

9" TP =14k 1p*, pike.

We have that ord,<(g) | ¢(p€) = p¢'(p —1). Note that ordpe(g) can’t
be of the form p®d where ¢ < e — 1 and d a proper divisor of p — 1
because then

g" ¢ =1 (mod p®)
reduces mod p to g¢ = 1 (mod p), contradicting the fact that g is a
primitive root modulo p. So we must have

ordpe(g) =p“(p—1)

where ¢ < e—1, and the calcluation above shows ¢ = e —1, completing
the proof. O






CHAPTER 6

Quadratic Residues

DEFINITION 6.0.1. If m is a positive integer, we say a is a quadratic
residue of mif (a, m) =1 and

x> =a (mod m)

has a solution. If the congruence above has no solution, then a is a
quadratic nonresidue of m.

PROPOSITION 6.0.2. Let p be an odd prime and a an integer not divisible by
p. Then

x*=a (mod p)
either has no solutions or exactly two distinct (i.e. incongruent) solutions
modulo p.

PROOF. If x> = a (mod p) has a solution x,, then —x, is also a solu-
tion. If xo = —x¢ (mod p) then 2xp =0 (mod p), and we may divide
through by 2 since p is odd, showing that p | xo, contradiction. So there
are at least two distinct solutions.

To see that there are exactly two distinct solutions, suppose xo and x;

both solve x* = a (mod p). Then x3 = x? (mod p), hence

(xo —x1)(x0 +x1) =0 (mod p),
implying that xo = £x1. O

PROPOSITION 6.0.3. If p is an odd prime, there are exactly P;—] residues and
Pz;] nonresidues of p among the integers

1, ..., p—1

PROOF. Since each square from 12 to (p — 1) has exactly two distinct
solutions among 1 through p — 1, the conclusion follows. O

27
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6.1. The Legendre Symbol
DEFINITION 6.1.1. Let p be an odd prime and a an integer. We define

1 if ais a quadratic residue of p
a
<> = ¢ —1 if ais a quadratic nonresidue of p

P 0 ifalp

PROPOSITION 6.1.2 (Euler’s criterion). Let p be an odd prime and a an
integer not divisible by p. then

(g) — o' (mod p).

PROOF. First assume that (%) = 1. Then x? = a has a solution, say Xo.
By Fermat’s Little Theorem,

apzi = (Xé)PZ;] = Xg_1 =1 (mod p)

Now assume that (%) = —1. Then x? = a has no solutions, Note that

for each iin 1 through p — 1 there exists a unique j in 1 through p — 1
for which ij = a, and since x> = a (mod p) has no solutions, we know
i #3j. So then

(p-1)=a"T,
and applying Wilson’s theorem completes the proof. O

THEOREM 6.1.3. Let p be an odd prime and a, b integers not divisible by p.
Then

(1) ifa=b (mod p) then (g) - (g)
o (3)()- (4).
® (&) =1

PROOF. (1) If a =b (mod p), then x> = a (mod p) has solutions if
and only if x> =b (mod p) has solutions, so (%) = (%).
(2) By Euler’s criterion,

(£)(2) e o = (a0 = () moap),
p) \p p

and since the Legendre symbol takes the values 1, we may con-

clude that (g) (g) = (%}’)
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(3) This follows from the previous part.

O
PROPOSITION 6.1.4. Ifp is an odd prime, then
<—1> {1 ifp=1 (mod 4)
P —1 ifp=—1 (mod 4)
PROOF. Apply Euler’s criterion. If p =1 (mod 4), then
(17 = (=1 =1
If p=—1 (mod 4), then
(1) = (2 =
O

6.2. Gauss’ Lemma

THEOREM 6.2.1. Let p be an odd prime and a an integer coprime to p. If s is
the least number of positive residues modulo p of the integers
p—1

2

a, 2a, ..., a

that are greater than p/2, then

3)-cr
P

PROOF. Letuy,...,us represent the residues of the integers
p—1
a, 2a, ..., Ta
greater than p/2, and let vy, ..., v represent the residues of these inte-

gers less than p/2. We will show
p—w,...,p—us,vi,..., vy ={1,...,p—1}L

It suffices to show that no two of these numbers are congruent modulo
p. Were u; = 1, then since a does not divide p,

ma=na (modp) = m=n (mod p),

contradiction. So u; # uj, and similarly v; # v;. In addition, we cannot
have p —u; =vj, for if so, then

ma=p—na (modp) = m=-n (mod p),

which contradicts the fact that m and n are both in 1 through }32;1
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Now we multiply things together. We know

(P—w)--(p—ushvi-ve = (=1)°uy -~ ugvy - vy
—(0* (P37t (mod )

U.]"'U-SV]"'Vt:(lPZ;] <pz_1)' (modp)

(“) — T = (1),
P

which completes the proof.

Yet at the same time,

By Euler’s criterion,

PROPOSITION 6.2.2. Ifp is an odd prime, then

(2) :(_])st;]'
P

PROOF. First, we compute the number of residues in

p—1.
1.2, 2.2, >

greater than p/2. This is a direct count since all of the above residues

are less than p. When 1 <j < %‘1, 2j < p/2whenj < p/4, so there are
| ] integers less than p/2, and thus

et

greater than p/2. By Gauss’ lemma, it remains to show that

2

)

P2 e

We first consider PZS—*]. Ifp =41 (mod 8), then
p2—1 B 64k? + 16k B

3 3 0 (mod 2).
If p =43 (mod 8), then

p2—1  64k?+48k+8
8§ 8

1 (mod 2).
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Now we consider x = Pz;] — 2]

p=8k+1 = x=4k— LZk—i-]J =0 (mod2)

4
3
p=8k+3 = x=4k+1— 2k+1 =1 (mod 2)
5
p=8k+5 = x=4k+2— 2k+1 =1 (mod 2)
7
p=8k+7 = x=4k+3— 2k+Z =0 (mod 2)

Since }’28—71 =21 |2| (mod 2)inall cases, the proof is complete. [J

6.3. The Law of Quadratic Reciprocity

PROPOSITION 6.3.1. Ifp is an odd prime and a an integer not divisible by

p, then
(a) = (=1)T(&p)
P

Tlap) =Y |9
oL

PROOF. As in the proof of Gauss’ lemma, let uy,...,u, represent the
residues of

where

p—1

2
that are greater than p/2, and vy, ..., v the residues of the above num-
bers that are less than p/2. Dividing,

ja—p{a]’J +r
P

where r = u; or r =vj. Adding % of these together yields

Pz;] Pz;] . S t
Sia=Y p |9+ X wr Yy
j=1 j=1 P i=1 j=1

a, 2a, ...,

a
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We also showed, though, that p —uq,...p —us,v1,..., v, are all the
integers from 1 through pz;], so

% s t
Zj:ps—Zui—i—Zvj.
j=1 i=1 j=1

Subtracting these equations, we find
et s
(@a=1) 3 j=pTlap)—ps+2) w
i=1 i=1
and since a and p are odd, this reduces mod 2 to
T(a,p)=s (mod 2),
and applying Gauss’ lemma completes the proof. O

THEOREM 6.3.2 (Quadratic Reciprocity). Let p and q be odd primes. Then

PY(9) =yt
(3) ()=

PROOF. We consider pairs of integers (x,y) where 1 < x < % and
1<y< qT”. There are %% such pairs. We divide these pairs into
two groups based on relative sizes of qx and py.

First we note that for all such pairs (x,y) we have qx # py, for if
qx = py, then q | py, implying either q | p or q | y. But q | p cannot
happen since q and p are distinct primes, and q | y cannot happen
since 1 <y < 9%1

To count the pairs for which qx > py, note that these are the pairs for
which 1 < x < ]92;1 and 1 <y < ﬂpﬁ, hence their number is T(q, p).

To count the pairs for which qx < py, note that these are the pairs for
which1 <y < 5%] and 1 < x < RqH, hence their number is T(p, q).

So
Tla,p) +Tp,q) = P 920,
henee Py (4 T(q,p)+T(p,q) prlazt
(5) (5) memremmmon = o,

as desired. 0



