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CHAPTER 1

Integers

The word integer comes from the Latin for “intact” or “whole.”

The integers are a collection of numbers – a collection so special that
entire subfields of mathematics are devoted to understanding them.

The integers include the positive integers,

1, 2, 3, 4, 5, . . .

as well as the negative integers,

−1, −2, −3, −4, −5, . . .

There is also an integer called 0 that is neither positive nor negative,
thought of as a neutral element of the collection.

All together, the postive integers, negative integers, and zero form the
collection of integers, which we will denote Z.

We will also denote the collection of positive integers by Z+.

1.1. Well-Ordering and Induction

A fundamental fact about the integers is:

The Well-Ordering Principle. Every nonempty subset X ⊆
Z+ has a least element.

It is logically equivalent to the following:

The Principle of Induction. If a subset X ⊆ Z+ satisfies 1 ∈ X
and (n ∈ X =⇒ n+ 1 ∈ X), then X = Z+.
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6 1. INTEGERS

PROOF. Let X be a subset of Z+ satisfying 1 ∈ X and

n ∈ X =⇒ n+ 1 ∈ X.

We proceed by contradiction: suppose X ̸= Z+. Then there is a positive
integer not in X, i.e. Z+\X is nonempty. Then Z+\X has a least element
n. Note that n ̸= 1, since 1 ∈ X. Thus n > 1, and since n is the least
element not in X, n− 1 must be in X. But by assumption, (n− 1) + 1 =
n ∈ X, contradicting our assumption that n /∈ X. This proves that the
well-ordering principle implies the principle of induction.

Conversely, consider a nonempty subset Y ⊆ Z+. If Y has just one
element, then that element is the least element of Y. Now suppose the
well ordering principle is true for all subsets of Z+ with n elements,
and suppose Y has n + 1 elements. Take y ∈ Y and let z be the least
element of Y \ y. Then min({y, z}) is the least element of Y. This proves
that the principle of induction implies the well-ordering principle. □

Also relevant is the following variation on the principle of induction:

Strong Induction. If a subset X ⊆ Z+ satisfies 1 ∈ X and

1, . . . , n ∈ X =⇒ n+ 1 ∈ X,

then X = Z+.

Despite looking like a stricter requirement, strong induction is actually
implied by the principle of induction.

PROOF. Let Y ⊆ Z+ satisfy 1 ∈ Y and

1, . . . , n ∈ Y =⇒ n+ 1 ∈ Y.

Let X ⊆ Z+ be the set of all positive integers n such that all positive
integers less than or equal to n are in Y. Then 1 ∈ X. Furthermore, if
n ∈ X, then n + 1 ∈ X. So then by the principle of induction, X = Z+,
which implies Y = Z+. □

A function is said to be defined recursively if it is defined at 1 and if there
exists a rule for finding f(n) in terms of f(1) through f(n−1). By strong
induction, such functions are defined on all of Z+.
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The archetypal example of a recursively defined function is the factorial
function, given by

n! =

{
1 if n = 0

n · (n− 1)! otherwise

For example, 6! = 720.

Defined in terms of the factorial function are the binomial coefficients,

(
n

k

)
=

n!

k!(n− k)!

A quick computation shows that

(
n

k

)
+

(
n

k+ 1

)
=

(
n+ 1

k+ 1

)
.

Also note that
(
n
0

)
=
(
n
n

)
= 1.

By these observations, binomial coefficients are always integers.

THEOREM 1.1.1 (Binomial theorem). Let a and b be integers and n a
nonnegative integer. Then

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.

PROOF. By induction. To see that the claim is true for n = 0, note that

(a+ b)0 = 1 =

0∑
k=0

(
0

k

)
akb0−k.
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Now assume the claim is true for all integers n ≤ m. Then

(a+ b)m+1 = (a+ b)m(a+ b)

=

(
m∑

k=0

(
m

k

)
akbm−k

)
(a+ b) by the inductive step

=

(
m∑

k=0

(
m

k

)
ak+1bm−k

)
+

(
m∑

k=0

(
m

k

)
akbm−k+1

)

=

(
m−1∑
k=0

(
m

k

)
ak+1bm−k

)
+ am+1 +

(
m∑

k=1

(
m

k

)
akbm−k+1

)
+ bm+1

=

(
m∑

k=1

(
m

k− 1

)
akbm−k+1

)
+ am+1 +

(
m∑

k=1

(
m

k

)
akbm−k+1

)
+ bm+1

= am+1 +

(
m∑

k=1

((
m

k− 1

)
+

(
m

k

))
akbm−k+1

)
+ bm+1

= am+1 +

(
m∑

k=1

(
m+ 1

k

)
akbm−k+1

)
+ bm+1

=

m+1∑
k=0

(
m+ 1

k

)
akbm+1−k.

By induction, the claim is true for all nonnegative integers n. □

Two consequences of this formula are that

2n =

n∑
k=0

(
n

k

)
and 0 =

n∑
k=0

(−1)k
(
n

k

)
.

1.2. Divisibility

The integers are closed under addition, subtraction, and multiplication.
However, not every integer quotient forms another integer.

DEFINITION 1.2.1. Let a, b ∈ Z. We say a divides b (or that b is divisible
by a, or that b is a multiple of a, or that a is a factor of b) and write a | b
if there is some c ∈ Z such that b = ac.
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PROPOSITION 1.2.2. If x | n and x | m, then for any integers a and b,

x | (an+ bm).

PROOF. We have cx = n and dx = m for some integers c and d. So

an+ bm = acx+ bdx = (ac+ bd)x,

which implies x | (an+ bm). □

THEOREM 1.2.3 (Division with remainder). If a and b are integers such
that b > 0, then there exist unique integers q and r such that

a = bq+ r and 0 ≤ r < b.

PROOF. Define the floor of x (denoted ⌊x⌋) to be the largest integer less
than or equal to x. Noting that

x− 1 < ⌊x⌋ ≤ x,

we set q = ⌊a/b⌋, r = a− b⌊a/b⌋. Now observe that

a/b− 1 < ⌊a/b⌋ ≤ a/b.

Multiplying through by b yields

a− b < b⌊a/b⌋ ≤ a.

Invert the inequality to obtain

−a ≤ −b⌊a/b⌋ < b− a,

and then add a:
0 ≤ a− b⌊a/b⌋ < b.

To show q and r are unique, suppose we have q ′ and r ′ such that
a = bq ′ + r ′. Then 0 = b(q − q ′) + (r − r ′), i.e. b divides r − r ′. But
since r and r ′ are both between 0 and b, their difference is between ±b,
so b can divide r − r ′ only if r − r ′ = 0, so we must have r = r ′, and
q = q ′ immediately after. □

1.3. Prime Numbers

The positive integer 1 has just one positive divisor. Every other positive
integer has at least two positive divisors, being divisible by itself and 1.

DEFINITION 1.3.1. A prime number is a positive integer with exactly
two positive divisors. A positive integer with more than two positive
divisors is composite.
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PROPOSITION 1.3.2. Every integer greater than 1 has a prime divisor.

PROOF. By contradiction. Assume there is a positive integer n greater
than 1 with no prime divisors. By the well-ordering principle we may
take n to be the smallest such number. If an integer is prime, it has
a prime divisor (namely, itself). Taking the contrapositive, an integer
with no prime divisors must not be prime. Hence, n is not prime, so
we may write n = ab with 1 < a < n and 1 < b < n. Because a < n, a
must have a prime divisor. But any prime divisor of a must also be a
prime divisor of n, contradicting our assumption that n had no prime
divisors. □

THEOREM 1.3.3. There are infinitely many prime numbers.1

PROOF. Consider
Qn = n! + 1.

We know Qn has a prime divisor, which we will call qn. Observe that
qn > n: otherwise, we would have qn ≤ n, hence qn | n!, hence
qn | (Qn − n!) = 1, which is impossible. We have thus found a prime
larger than n for any n, so there must be infinitely many primes. □

The gap between primes can be of any length. Indeed, consider

(n+ 1)! + 2, (n+ 1)! + 3, . . . , (n+ 1)! + n+ 1.

These n consecutive integers are all composite.

1Consequently, 0 has infinitely many divisors, and is also the unique integer satisfying
this condition.



CHAPTER 2

Coprimality and Factorization

2.1. Greatest Common Divisors

DEFINITION 2.1.1. We say an integer d is a common divisor of a and
b if both d | a and d | b, and that a common divisor is greatest if any
common divisor c of a and b also divides d. We denote by (a, b) the
greatest common divisor of a and b.

THEOREM 2.1.2 (Bezout’s identity). If a and b are integers not both 0, then
(a, b) is the smallest positive linear combination of a and b, e.g. there are
integers m and n such that

am+ bn = (a, b).

PROOF. Consider all integer linear combinations of a and b.

Some of these linear combinations are positive, such as a2 + b2, so the
set of all positive linear combinations of a and b is nonempty. By the
well-ordering principle this set has a least element, which we will call
d. Let m and n be such that d = am+ bn.

Use division with remainder to obtain a = dq+ r. Note that

r = a− dq = a− (am+ bn)q = a(1−mq) − b(nq),

i.e. r is a linear combination of a and b. If r were positive then d
wouldn’t be the smallest positive linear combination of a and b, so
r = 0, i.e. d | a. A nearly identical argument shows that d | b.

Suppose c is a common divisor of a and b. Then there exist integers u
and v such that a = uc and b = vc. But then

d = am+ bn = ucm+ vcn = (um+ vn)c,

i.e. c | d. So d = (a, b), and the proof is complete. □

DEFINITION 2.1.3. We say two integers a and b are coprime if (a, b) = 1.

11
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2.2. The Euclidean Algorithm

Here is a way to compute greatest common divisors.

Euclidean Algorithm. Let r0 = a and r1 = b be nonnegative
integers with b ̸= 0. Divide repeatedly to obtain

rj = rj+1qj+1 + rj+2, 0 < rj+2 < rj+1

for j ∈ {0, . . . , n− 2}. If rn = 0, then rn−1 = (a, b).

We begin by showing that whenever a = bq+r, we have (a, b) = (b, r).

PROOF. If both c | a and c | b then c | a−bq = r. Also, if both c | b and
c | r then c | bq+ r = a. Since the common divisors of a and b are the
same as the common divisors of b and r, we have (a, b) = (b, r). □

Now we show the Euclidean algorithm works.

PROOF. In the situation described above, note that

(a, b) = (b, r2) = (r2, r3) = · · · = (rn−1, 0) = rn−1.

We hit 0 eventually because the sequence of remainders cannot contain
more than |a| terms. □

2.3. The Fundamental Theorem of Arithmetic

THEOREM 2.3.1. Any positive integer can be uniquely factored into primes.

First we prove existence by contradiction.

PROOF. Let n ∈ Z+. Suppose n were the least positive integer such that
n cannot be factored into primes. Then n cannot itself be prime, so n =
ab with 1 < a < n and 1 < b < n. Thus, a and b admit factorizations
into primes. Combining these yields a prime factorization of n, which
contradicts our assumption that n had no such prime factorization. □

Before proving uniqueness, we need an auxillary fact.

PROPOSITION 2.3.2 (Euclid’s lemma). If a, b, c are positive integers with
(a, b) = 1 and a | bc, then a | c.

PROOF. Since (a, b) = 1, we may write 1 = am+ bn. Multiply by c to
obtain c = amc+ bnc. But a | amc and a | bnc, so a | c. □
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Next, we need to show that primes do not decompose as factors.

PROPOSITION 2.3.3. If a1, . . . , an are integers and p prime,

p | a1 · · ·an =⇒ p | ai for some i.

PROOF. By induction. If n = 1, then p = a1, hence p | a1. Now
suppose the claim holds for n = m, and consider p = a1 · · ·am+1.
Then by what was just shown, either p | a1 · · ·am or p | am+1. But if
p | a1 · · ·am then p | ai for some i by the inductive hypothesis. □

We are now ready to prove uniqueness of prime factorization.

PROOF. Suppose n is the smallest positive integer with

n = p1 · · ·ps = q1 · · ·qt

where the pi and qj are prime. Consider p1. It must divide one of the
qi, let’s say q1 without loss of generality. But q1 is prime, and since
p1 ̸= 1, we must have p1 = q1. Divide through by p1 to obtain

n/p1 = p2 · · ·ps = q2 . . . qt,

contradicting our assumption that n was the smallest positive integer
with at least two prime factorizations. □





CHAPTER 3

Congruences

The language of congruences was developed by Gauss.

3.1. Basic Properties

DEFINITION 3.1.1. Let a, b ∈ Z and m ∈ Z+. We say a is congruent to b
modulo m and write a = b (mod m) if m | (a− b).

PROPOSITION 3.1.2. Being congruent modulo m is an equivalence relation:
it is reflexive, symmetric, and transitive.

PROOF. Since every number divides 0, we have m | (a − a), thus
a = a (mod m). Suppose a = b (mod m). Then m | (a − b), hence
m | (b − a), hence b = a (mod m). Finally, suppose a = b (mod m)
and b = c (mod m). Then m | (a− b) and m | (b− c), hence

m | ((a− b) + (b− c)) = (a− c),

hence a = c (mod m). □

One can do arithmetic with congruences.

PROPOSITION 3.1.3. Let a, b, c, d ∈ Z and m ∈ Z+. If a = b (mod m)
and c = d (mod m), then
(1) a+ c = b+ d (mod m),
(2) a− c = b− d (mod m), and
(3) ac = bd (mod m).

PROOF. We have m | (a− b) and m | (c− d). Observe that

m | ((a− b) + (c− d)) = ((a+ c) − (b+ d)),

m | ((a− b) − (c− d)) = ((a− c) − (b− d)),

and

m | (a− b)c+ b(c− d) = ac− bc+ bc− bd = ac− bd,

from which the result follows. □

15
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3.2. Sun’s Remainder Theorem

THEOREM 3.2.1. Given integers a1, . . . , ak and pairwise coprime integers
n1, . . . , nk, the system of congruences

x = ai (mod ni)

has a solution unique modulo N =
∏k

i=1 ni.

PROOF. Let Ni = N/ni. By pairwise coprimality of the ni, we have
(Ni, ni) = 1. Hence, we can find inverses yi such that Niyi = 1
(mod ni). Consider

x = a1N1y1 + · · ·+ akNkyk.

Since N1y1 = 1 (mod n1), we have a1N1y1 = a1 (mod n1). Since
n1 | Nj for j ̸= 1, all the other terms vanish, so x = a1 (mod n1).
Similarly, x = ai (mod ni) for all i ∈ {1, . . . , k}.

To see that the solution is unique modulo N, suppose x and x̃ are both
solutions. Then x − x̃ = 0 (mod ni). Multiplying these congrunces
together, we have x− x̃ = 0 (mod N). □

3.3. Wilson’s Theorem

THEOREM 3.3.1. If p is prime, then (p− 1)! = −1 (mod p).

PROOF. Note that the only solutions to x2 = 1 (mod p) are 1 and −1,
i.e. 1 and p − 1 are the only equivalence classes that are their own
inverses modulo p. Thus every element from 2 to p− 2 has an inverse
that isn’t itself. Multiplying the (p − 3)/2 classes together gives the
result. □

3.4. Binomials Modulo p

Note that the binomial coefficients are divisible modulo p, for if N =
p!

(p−r)!r! then p | p! but p ∤ (p− r)! and p ∤ r!, thus implying p | N. Thus,

(a+ b)p = ap + bp (mod p).



CHAPTER 4

Arithmetic Functions

An arithmetic function is a function from Z+ to Z.

One example of an arithmetic function is (n, k) for fixed k.

PROPOSITION 4.0.1. For coprime m and n,

(m,k)(n, k) = (mn, k).

PROOF. We will show (mn, k) | (m,k)(n, k) and (m,k)(n, k) | (mn, k).
Note that (m,k)(n, k) certainly divides both mn and k, and thus also
divides (mn, k). Since we have (m,k) = am+bk and (n, k) = cn+dk
by Bezout’s identity,

(m,k)(n, k) = mn · ac+ (b(cm+ dk) + amd)k

i.e. (mn, k) | (m,k)(n, k). This completes the proof. □

Several other such functions also exist.

4.1. The Möbius Function

DEFINITION 4.1.1. The Möbius function is

µ(n) =


1 if n = 1

(−1)s if n is squarefree with s prime factors
0 otherwise

PROPOSITION 4.1.2. For coprime m and n,

µ(mn) = µ(m)µ(n)

i.e. µ is multiplicative.

PROOF. By cases. Suppose (without loss of generality) that m = 1.
Then mn = n, and in particular

µ(mn) = µ(n) = 1 · µ(n) = µ(1)µ(n) = µ(m)µ(n).

17
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Now suppose m and n are coprime integers both not equal to 1. If
(without loss of generality) m is not squarefree, then mn will also be
not squarefree, wherein

µ(mn) = 0 = 0 · µ(n) = µ(m)µ(n).

If m and n are both squarefree, then mn will also be squarefree. Since
m and n are coprime, m having s divisors and n having t divisors
implies mn has s+ t divisors. □

THEOREM 4.1.3 (Möbius Inversion Formula). If f and g are such that

f(n) =
∑
d|n

g(d), n ∈ Z+

then equivalently

g(n) =
∑
d|n

µ(d)f(n/d), n ∈ Z+.

PROOF. Define the convolution of any two arithmetic functions f, g as

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

Rewriting the sum as

(f ∗ g)(n) =
∑

ab=n

f(a)g(b)

makes it clear that convolution is both commutative and associative.

Now we will show that
µ ∗ 1 = δ

where

δ(n) =

{
1 if n = 1

0 otherwise

and 1(n) = 1 for all n.

If n = 1, then
∑

d|1 µ(n) = µ(1) = 1. So suppose n ̸= 1 with k prime
factors. All the non-squarefree factors of n vanish in the sum, so∑

d|n

µ(d) =

k∑
ℓ=0

(
k

ℓ

)
µ (p1 · · ·pℓ) = (1− 1)k = 0.
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Now we prove the formula. Observe that

g = δ ∗ g = (µ ∗ 1) ∗ g = µ ∗ (1 ∗ g) = µ ∗ f

and also
f = f ∗ δ = f ∗ (µ ∗ 1) = (f ∗ µ) ∗ 1 = g ∗ 1

which is what we wanted to show. □

PROPOSITION 4.1.4. ∏
p|n

(1− p−1) =
∑
d|n

µ(d)

d
.

PROOF. All the non-squarefree factors of n vanish in the sum on the
right, and multiplying out the product on the left yields the remaining
sum. □

4.2. The Euler Totient

DEFINITION 4.2.1. The Euler totient function is

ϕ(n) = n
∏
p|n

(1− p−1)

where the product is over all primes dividing n.

PROPOSITION 4.2.2. The ϕ function counts the integers coprime to n:

ϕ(n) = |{k : (n, k) = 1, 1 ≤ k < n}|.

PROOF. When p | n, the number of positive integers up to n divisible
by p is n/p. Thus, each (1 − p−1) term in the product filters out the
integers divisible by p. For example, if n =

∏k
j=1 p

aj

j , then there are

n(1− p−1
1 ) = n− n/p1

integers between 1 and n not divisible by p1. Having a (1− p−1
i ) term

for each pi results in the product counting the positive integers up to n
coprime to n. □

PROPOSITION 4.2.3. For coprime m and n,

ϕ(mn) = ϕ(m)ϕ(n),

i.e. ϕ is multiplicative.
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PROOF. Consider the system of congruences

x = a (mod m), x = b (mod n).

Since m and n are coprime, this system has a unique solution modulo
mn by Sun’s remainder theorem. We claim x is coprime to mn if and
only if a is coprime to m and b is coprime to n.

( =⇒ ) : Suppose x is coprime to mn. Then x is coprime to both m
and n. Write x = km+ a and x = ℓn+ b. Were a not coprime to m, x
would be not coprime to m (since m is not coprime to m), so a must be
coprime to m. Similarly, b must be coprime to n.

( ⇐= ) : Now suppose a is coprime to m and b is coprime to n. Again
consider x = km+ a and x = ℓn+ b. Were x not coprime to m, then a
would not be coprime to m, so x must be coprime to m. Similarly, x is
coprime to n. Since m and n are coprime, x is coprime to mn.

Since there are ϕ(m) numbers coprime to m and ϕ(n) numbers coprime
to n, and since each pair (a, b) produces a unique number x coprime
to mn, it follows that there are ϕ(m)ϕ(n) numbers between 1 and mn
coprime to mn. □

PROPOSITION 4.2.4.
n =

∑
d|n

ϕ(d).

PROOF. We want to show id = 1 ∗ϕ, so by Möbius inversion it suffices
to show ϕ = µ∗ id. From the definition of ϕ and a previous proposition,

ϕ(n) = n
∏
p|n

(1− p−1) =
∑
d|n

µ(d)
n

d
= (µ ∗ id)(n).

This proves the result. □

PROPOSITION 4.2.5.
n∑

ℓ=1

⌊n
ℓ

⌋
ϕ(ℓ) =

(
n

2

)
.

PROOF. Since
n =

∑
d|n

ϕ(d),
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we have (
n

2

)
=

n∑
k=1

k =

n∑
k=1

∑
d|k

ϕ(d) =

n∑
k=1

n∑
ℓ=1

ϕ(ℓ)[ℓ | k],

where

[ℓ | k] =

{
1 if ℓ | k
0 otherwise

noting that for ℓ > k we have [ℓ | k] = 0.

Swapping the order of summation,
n∑

k=1

n∑
ℓ=1

ϕ(ℓ)[ℓ | k] =

n∑
ℓ=1

ϕ(ℓ)

n∑
k=1

[ℓ | k] =

n∑
ℓ=1

ϕ(ℓ)
⌊n
ℓ

⌋
,

which completes the proof. □

4.3. Euler’s Theorem

THEOREM 4.3.1. If a and n are coprime positive integers, then

aϕ(n) = 1 (mod n).

PROOF. For any two integers a and b both coprime to n, their product
is also coprime to n. Said another way,∏

(b,n)=1

b =
∏

(b,n)=1

ab = aϕ(n)
∏

(b,n)=1

b (mod n),

from which the result follows. □

We note that the case ϕ(p) = p−1 is known as Fermat’s Little Theorem.

4.4. The Sum of Divisors

DEFINITION 4.4.1. The sum of divisors function is

σk(n) =
∑
d|n

dk.

THEOREM 4.4.2. For coprime m and n,

σk(mn) = σk(m)σk(n).
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PROOF. We’ll show that if f and g are multiplicative, then so is f ∗ g.

(f ∗ g)(mn) =
∑

ab=mn

f(a)g(b)

=
∑

ambm=m

∑
anbn=n

f(aman)g(bmbn)

=
∑

ambm=m

∑
anbn=n

f(am)f(an)g(bm)g(bn)

=

( ∑
ambm=m

f(am)g(bm)

)( ∑
anbn=n

f(an)g(bn)

)

= (f ∗ g)(m) · (f ∗ g)(n)

With this established, note that σk = idk ∗ 1. This proves the result. □



CHAPTER 5

Primitive Roots

5.1. The Order of an Integer

By Euler’s theorem, the set of positive integers x satsifying

ax = 1 (mod n)

is nonempty.

DEFINITION 5.1.1. The smallest positive integer x satisfying the above
congruence is denoted ordn(a) and is called the order of a modulo n.

PROPOSITION 5.1.2. If a and n are coprime with n > 0, then the positive
integer x is a solution to ax = 1 (mod n) if and only if

ordn(a) | x.

PROOF. Suppose ordn(a) | x. Then x = ordn(a) · k for some k, hence

ax = aordn(a)·k = (aordn(a))k = 1k = 1 (mod n).

Conversely, if ax = 1 (mod n), divide to obtain

x = q · ordn(a) + r, 0 ≤ r < ordn(a).

Thus ax = ar (mod n). But we must have r = 0, since y = ordn(a)
is the smallest positive integer such that ay = 1 (mod n). Hence
ordn(a) | x, as desired. □

So, in particular, ordn(a) | ϕ(n).

PROPOSITION 5.1.3. Let a, b, and n be integers with ord(a) and ord(b)
coprime and n > 0. Then

ordn(a)ordn(b) = ordn(ab).

PROOF. Let ordn(a) = x, ordn(b) = y, and ordn(ab) = z. Note that
z | xy, since

(ab)xy = axybxy = (ax)y(by)x = 1 (mod n).

23
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Since x and y are coprime,

(ab)z = 1 =⇒ 1 = ((ab)z)x = (ax)zbxz = bxz =⇒ y | xz =⇒ y | z

where the third implication follows via Euclid’s lemma. Similarly, x | z.
By coprimality of x and y again, we have xy | z. We may thus conclude
that xy = z. □

5.2. Existence of Primitive Roots

DEFINITION 5.2.1. If r and n are coprime with n > 0 and if

ordn(r) = ϕ(n),

then r is called a primitive root modulo n.

THEOREM 5.2.2. Primitive roots exist modulo a prime.

PROOF. By Fermat’s Little Theorem, the equation

Xp−1 − 1 = 0

has p− 1 solutions modulo p. For any divisor d of p− 1 consider the
factorization

Xp−1 − 1 = (Xd − 1)(1+ Xd + · · ·+ Xp−1−d).

The polynomial Xd − 1 has at most d roots and the other one has at
most p−1−d roots and Xp−1−1 has exactly p−1 roots. Hence, Xd−1
has exactly d roots.

Factor p− 1 into
p− 1 =

∏
qeq

For each factor qe of p − 1, xq
e

− 1 has qe roots and xq
e−1

− 1 has
qe−1 roots; hence, there are qe − qe−1 = ϕ(qe) elements xq for which
ordp(xq) = qe. By the proposition about ordn(a) respecting multipli-
cation with coprime factors, any product

∏
q xq has order p− 1, and

thus is a primitive root. □

THEOREM 5.2.3. Primitive roots exist modulo an odd prime power.

PROOF. Let g be a primitive root modulo p. By the binomial theorem,

(g+ p)p−1 = gp−1 + (p− 1)gp−2p (mod p2),

thus (g + p)p−1 ̸= gp−1 (mod p2), and in particular either gp−1 ̸= 1

(mod p2) or (g+p)p−1 ̸= 1 (mod p2). Replace g with g+p if necessary
to ensure that gp−1 ̸= 1 (mod p2), i.e.

gp−1 = 1+ k1p, p ∤ k1.



5.2. EXISTENCE OF PRIMITIVE ROOTS 25

Again by the binomial theorem,

gp(p−1) = (1+ k1p)
p = 1+ k2p

2, p ∤ k2.
So g is now a primitive root modulo p2. Let e > 2 be an integer. Again
by the binomial theorem,

gpe−2(p−1) = 1+ ke−1p
e−1, p ∤ ke−1.

We have that ordpe(g) | ϕ(pe) = pe−1(p− 1). Note that ordpe(g) can’t
be of the form pεd where ε ≤ e − 1 and d a proper divisor of p − 1
because then

gpεd = 1 (mod pe)

reduces mod p to gd = 1 (mod p), contradicting the fact that g is a
primitive root modulo p. So we must have

ordpe(g) = pε(p− 1)

where ε ≤ e− 1, and the calcluation above shows ε = e− 1, completing
the proof. □





CHAPTER 6

Quadratic Residues

DEFINITION 6.0.1. If m is a positive integer, we say a is a quadratic
residue of m if (a,m) = 1 and

x2 = a (mod m)

has a solution. If the congruence above has no solution, then a is a
quadratic nonresidue of m.

PROPOSITION 6.0.2. Let p be an odd prime and a an integer not divisible by
p. Then

x2 = a (mod p)

either has no solutions or exactly two distinct (i.e. incongruent) solutions
modulo p.

PROOF. If x2 = a (mod p) has a solution x0, then −x0 is also a solu-
tion. If x0 = −x0 (mod p) then 2x0 = 0 (mod p), and we may divide
through by 2 since p is odd, showing that p | x0, contradiction. So there
are at least two distinct solutions.

To see that there are exactly two distinct solutions, suppose x0 and x1
both solve x2 = a (mod p). Then x20 = x21 (mod p), hence

(x0 − x1)(x0 + x1) = 0 (mod p),

implying that x0 = ±x1. □

PROPOSITION 6.0.3. If p is an odd prime, there are exactly p−1
2

residues and
p−1
2

nonresidues of p among the integers

1, . . . , p− 1.

PROOF. Since each square from 12 to (p− 1)2 has exactly two distinct
solutions among 1 through p− 1, the conclusion follows. □

27
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6.1. The Legendre Symbol

DEFINITION 6.1.1. Let p be an odd prime and a an integer. We define

(
a

p

)
=


1 if a is a quadratic residue of p
−1 if a is a quadratic nonresidue of p
0 if a | p

PROPOSITION 6.1.2 (Euler’s criterion). Let p be an odd prime and a an
integer not divisible by p. then(

a

p

)
= a

p−1
2 (mod p).

PROOF. First assume that
(

a
p

)
= 1. Then x2 = a has a solution, say x0.

By Fermat’s Little Theorem,

a
p−1

2 = (x20)
p−1

2 = xp−1
0 = 1 (mod p).

Now assume that
(

a
p

)
= −1. Then x2 = a has no solutions, Note that

for each i in 1 through p− 1 there exists a unique j in 1 through p− 1

for which ij = a, and since x2 = a (mod p) has no solutions, we know
i ̸= j. So then

(p− 1)! = a
p−1

2 ,

and applying Wilson’s theorem completes the proof. □

THEOREM 6.1.3. Let p be an odd prime and a, b integers not divisible by p.
Then

(1) if a = b (mod p) then
(

a
p

)
=
(

b
p

)
.

(2)
(

a
p

)(
b
p

)
=
(

ab
p

)
.

(3)
(

a2

p

)
= 1.

PROOF. (1) If a = b (mod p), then x2 = a (mod p) has solutions if
and only if x2 = b (mod p) has solutions, so

(
a
p

)
=
(

b
p

)
.

(2) By Euler’s criterion,(
a

p

)(
b

p

)
= a

p−1
2 b

p−1
2 = (ab)

p−1
2 =

(
ab

p

)
(mod p),

and since the Legendre symbol takes the values ±1, we may con-
clude that

(
a
p

)(
b
p

)
=
(

ab
p

)
.
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(3) This follows from the previous part.
□

PROPOSITION 6.1.4. If p is an odd prime, then(
−1

p

)
=

{
1 if p = 1 (mod 4)

−1 if p = −1 (mod 4)

PROOF. Apply Euler’s criterion. If p = 1 (mod 4), then

(−1)
p−1

2 = (−1)2k = 1.

If p = −1 (mod 4), then

(−1)
p−1

2 = (−1)2k−1 = −1.

□

6.2. Gauss’ Lemma

THEOREM 6.2.1. Let p be an odd prime and a an integer coprime to p. If s is
the least number of positive residues modulo p of the integers

a, 2a, . . . ,
p− 1

2
a

that are greater than p/2, then(
a

p

)
= (−1)s.

PROOF. Let u1, . . . , us represent the residues of the integers

a, 2a, . . . ,
p− 1

2
a

greater than p/2, and let v1, . . . , vt represent the residues of these inte-
gers less than p/2. We will show

{p− u1, . . . , p− us, v1, . . . , vt} = {1, . . . , p− 1}.

It suffices to show that no two of these numbers are congruent modulo
p. Were ui = uj, then since a does not divide p,

ma = na (mod p) =⇒ m = n (mod p),

contradiction. So ui ̸= uj, and similarly vi ̸= vj. In addition, we cannot
have p− ui = vj, for if so, then

ma = p− na (mod p) =⇒ m = −n (mod p),

which contradicts the fact that m and n are both in 1 through p−1
2

.
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Now we multiply things together. We know

(p− u1) · · · (p− us)v1 · · · vt = (−1)su1 · · ·usv1 · · · vt

= (−1)s
(
p− 1

2

)
! (mod p)

Yet at the same time,

u1 · · ·usv1 · · · vt = a
p−1

2

(
p− 1

2

)
! (mod p)

By Euler’s criterion, (
a

p

)
= a

p−1
2 = (−1)s,

which completes the proof. □

PROPOSITION 6.2.2. If p is an odd prime, then(
2

p

)
= (−1)

p2−1
8 .

PROOF. First, we compute the number of residues in

1 · 2, 2 · 2, · · · , p− 1

2
· 2

greater than p/2. This is a direct count since all of the above residues
are less than p. When 1 ≤ j ≤ p−1

2
, 2j < p/2 when j ≤ p/4, so there are

⌊p
4
⌋ integers less than p/2, and thus

s =
p− 1

2
−
⌊p
4

⌋
greater than p/2. By Gauss’ lemma, it remains to show that

p2 − 1

8
=

p− 1

2
−
⌊p
4

⌋
(mod 2).

We first consider p2−1
8

. If p = ±1 (mod 8), then

p2 − 1

8
=

64k2 ± 16k

8
= 0 (mod 2).

If p = ±3 (mod 8), then

p2 − 1

8
=

64k2 ± 48k+ 8

8
= 1 (mod 2).
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Now we consider x = p−1
2

−
⌊
p
4

⌋
.

p = 8k+ 1 =⇒ x = 4k−

⌊
2k+

1

4

⌋
= 0 (mod 2)

p = 8k+ 3 =⇒ x = 4k+ 1−

⌊
2k+

3

4

⌋
= 1 (mod 2)

p = 8k+ 5 =⇒ x = 4k+ 2−

⌊
2k+

5

4

⌋
= 1 (mod 2)

p = 8k+ 7 =⇒ x = 4k+ 3−

⌊
2k+

7

4

⌋
= 0 (mod 2)

Since p2−1
8

= p−1
2

−
⌊
p
4

⌋
(mod 2) in all cases, the proof is complete. □

6.3. The Law of Quadratic Reciprocity

PROPOSITION 6.3.1. If p is an odd prime and a an integer not divisible by
p, then (

a

p

)
= (−1)T(a,p)

where

T(a, p) =

p−1
2∑

j=1

⌊
aj

p

⌋
PROOF. As in the proof of Gauss’ lemma, let u1, . . . , us represent the
residues of

a, 2a, . . . ,
p− 1

2
a

that are greater than p/2, and v1, . . . , vt the residues of the above num-
bers that are less than p/2. Dividing,

ja = p

⌊
aj

p

⌋
+ r

where r = ui or r = vj. Adding p−1
2

of these together yields
p−1

2∑
j=1

ja =

p−1
2∑

j=1

p

⌊
aj

p

⌋
+

s∑
i=1

ui +

t∑
j=1

vj
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We also showed, though, that p − u1, . . . p − us, v1, . . . , vt are all the
integers from 1 through p−1

2
, so

p−1
2∑

j=1

j = ps−

s∑
i=1

ui +

t∑
j=1

vj.

Subtracting these equations, we find

(a− 1)

p−1
2∑

j=1

j = pT(a, p) − ps+ 2

s∑
i=1

ui

and since a and p are odd, this reduces mod 2 to

T(a, p) = s (mod 2),

and applying Gauss’ lemma completes the proof. □

THEOREM 6.3.2 (Quadratic Reciprocity). Let p and q be odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

PROOF. We consider pairs of integers (x, y) where 1 ≤ x ≤ p−1
2

and
1 ≤ y ≤ q−1

2
. There are p−1

2
q−1
2

such pairs. We divide these pairs into
two groups based on relative sizes of qx and py.

First we note that for all such pairs (x, y) we have qx ̸= py, for if
qx = py, then q | py, implying either q | p or q | y. But q | p cannot
happen since q and p are distinct primes, and q | y cannot happen
since 1 ≤ y ≤ q−1

2
.

To count the pairs for which qx > py, note that these are the pairs for
which 1 ≤ x ≤ p−1

2
and 1 ≤ y ≤ qx

p
, hence their number is T(q, p).

To count the pairs for which qx < py, note that these are the pairs for
which 1 ≤ y ≤ q−1

2
and 1 ≤ x ≤ py

q
, hence their number is T(p, q).

So
T(q, p) + T(p, q) =

p− 1

2

q− 1

2
,

hence (
p

q

)(
q

p

)
= (−1)T(q,p)+T(p,q) = (−1)

p−1
2

q−1
2 ,

as desired. □


