
Divergence of a Binomial Series

Abstract

We show that the series ∑
n≥1

n
√
2− 1

diverges. The solution was inspired by perturbation theory.

Proof. The generalized binomial theorem states that
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where x is any real number, and (
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)
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k!

denotes the generalized binomial coefficient.

Note that 1+ 1 = 2, and so (1+ 1)1/n − 1 = n
√
2− 1.
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Note that
∑
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)
is a convergent alternating series, so we may bound it below using the first two terms.
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Thus ∑
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which diverges by comparision with the harmonic series.


