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Chapter 2

The Topological Perspective

2.1 Nearness

This section’s introduction was adapted from Vickers’ book “Topology via Logic.”

When youmeasure a physical property that takes values inR, the resultingmeasurement quantity is always
some r ∈ Q up to some positive rational error ε ∈ Q+.

What the mesurement approximates, that is, the actual value, may in fact be some real x:

x ∈ (r− ε, r+ ε).

However, if the ideal range for x is some possibly irrational intervalU (where “ideal range” could mean,
say, the most precise range of physically meaningful measurements) then the best we could do is

U ⊆ (r− ε, r+ ε)

for increasingly narrow intervals.

For example, if one measurement leads us to believe thatU ⊆ (1, 2) but another saysU ⊆ (2, 3), then
we do NOT haveU = 2, but rather a defective system of measurementU = ∅, from which we may
deduce nothing at all.

Thus, finite intersections either refineU or invalidate the existence ofU altogether.

Suppose we wanted a precise description ofU in terms of measurements we are actually able to make, i.e.
rational intervals. We will prove in this chapter thatQ is dense inR.

Theorem 2.1. Between any two a, b ∈ R such that a < b, there is c ∈ Q ∩ (a, b).

The boundary ofU is exactly some (possibly irrational) distance δ away from x:

(x− δ, x+ δ) ⊂ U.
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4 CHAPTER 2. THE TOPOLOGICAL PERSPECTIVE

Think of this interval as zooming in on a subset of U with a magnifier of some sort. If we can make
arbitrarily precise rational measurements, then we may pick r, ε ∈ Q such that x− δ/2 < r < x and
x− r < ε < r− (x− δ) and then (this takes some effort) we get:

x ∈ (r− ε, r+ ε) ⊆ (x− δ, x+ δ) ⊆ U

and in this way we may recoverU as an aribtrary union of rational intervals.

Note that since x is always properly contained within (r− ε, r+ ε) and henceU, the value xmay never
lie on the boundary ofU! Thus, we have a fairly precise description ofU.

The intervalU abstracts to the idea of an open set.

Open vs Closed

Definition 2.2. Let X be a set. A topology on X consists of a set of open sets τ ⊆ 2X satisfying:

• ∅ ∈ τ and X ∈ τ

• τ is stable under finite intersections

((Xi)
n
i=1 ⊆ τ) ≤

(
n⋂
i=1

Xi ∈ τ

)
.

• τ is stable under arbitrary unions

((Xι)ι∈J ⊆ τ) ≤

(⋃
ι∈J

Xι ∈ τ

)
.

We call (X, τ) a topological space. Here, “stable” refers to the property that operating on the input
wihtin a given setting produces an output that stays within that setting.

Every topological space also has a set of closed sets τc satisfying:

• ∅ ∈ τc and X ∈ τc

• τc is stable under finite unions

• τc is stable under arbitrary intersections

As the notation suggests, (U ∈ τ) = (Uc ∈ τc).
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Continuous Functions

Definition 2.3. Let (X, τX) and (Y, τY) be topological spaces. A function f : X → Y is continuous if

∀Z ∈ 2Y ((Z ∈ τY) ≤ (f∗(Z) ∈ τX))

i.e. if open sets on Y “pull back” to open sets on X.

Theorem 2.4. The identity map is continuous.

Proof. Follows from the fact that the domain of the identity map matches its codomain.

Theorem 2.5. Continuity is stable under composition.

Proof. Let f : X → Y and g : Y → ZwithU open in Z. Then

(g ◦ f)∗(U) = (f∗ ◦ g∗)(U) = f∗(g∗(U))

which is open in X.

The Category Top

Topological spaces form the objects of a category called Top, a subcategory of Set. The arrows in Top
are continuous functions. As we observed, continuous functions are stable under composition and the
identity map is always continuous.

Further, continuity itself may be viewed as a functor

τ : Topop → Poset

via τ(X, τX) = (τX,⊆) and τ(f : (X, τX) → (Y, τY)) = f∗ : (τY,⊆) → (τX,⊆), where a functor

F : C → D

is a map that respects the arrow structure of C andD. In particular, (·)op is the functorCat → Catwhich
takes categories in the 2-category of categories and reverses all of their arrows.

Examples

Here are some objects/arrows inTop.

These examples are mostly of an abstractly topological sort; more concrete examples will follow shortly.

0. The empty space (∅, {∅}). There is a unique continuous map finit going from the empty space into
any other topological space (X, τ), wherein every preimage is empty: (∅, {∅}) is initial inTop.

1. The point space ({∗}, {∅, {∗}}). There is a unique continuous map ffin going from any other
topological space (X, τ) into the point space, wherein the preimage of the point is all ofX and the
preimage of the empty set is empty: the point space is final inTop.
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2. Let X be a set.

a) The coarsest (fewest open sets) example of a topology on X is

τtrivial = {∅, X}.

b) The finest (most open sets) example of a topology on X is

τdiscrete = 2X.

3. Let X be a topological space and {Yι}ι∈J an indexed family of topological spaces.

a) Suppose we have a family of functions

fι : X → Yι.

The initial topology is the coarsest topology on X that makes the fι continuous.
b) Now suppose we have a family of functions

fι : Yι → X.

The final topology is the finest topology on X that makes the fι continuous.

4. Recall that 2 = {0, 1}. The Sierpinski space (2, {∅, {1}, 2}) is an example of a topological space
whose topology is neither trivial nor discrete. The space acts as a subobject classifier inTop: any char-
acterstic function χU from X into the Sierpinski space is continuous exactly whenU = χU

∗({1}).

5. Ametric example which we will explore later, and perhaps the most tangible, is to considerR and
let the most basic open set be some interval (a, b)with a < b, so that arbitrary open sets are then
unions of these intervals. The resulting topology is called the Euclidean topology onR.

Projectors and Coprojectors

Example No. 3 above is paramount: several important spaces are constructed by considering initial and
final topologies with respect to a family of functions.

Let X be a topological space.

Definition 2.6. A subset Z ⊆ X can be viewed as a subspace of Xwhen equipped with the subspace
topology, which is initial with respect to the coprojector map ι : Z → X. Similarly, we may form a
quotientX/ ∼ from an equivalence relation ∼ defined onX, and this becomes a topological space when
equipped with the quotient topology,which is final with respect to the projector map π : X → X/ ∼.

Now, let {Xι}ι∈J be a collection of spaces.

Definition 2.7. If we want to treat each space Xι as a subspace of a parent space Σ =
∐

ι∈J Xι, then
taking the topology final with respect to the coprojectors i : Xi → Σ yields the coproduct topology.
Similarly, if we want to treat each space Xι as a quotient of a parent spaceΠ =

∏
ι∈J Xι, then taking the

topology initial with respect to the projectors p : Π → Xp yields the product topology.
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Connectedness and Compactness

Definition 2.8. A topological space (X, τ) is connected if there are noX1, X2 ∈ τ such thatX can be
written as X1 ∪ X2 with X1 ∩ X2 = ∅.

The continuous image of a connected set is another connected set.

Theorem 2.9. Let f : X → f∗(X) be continuous. If X is connected then so is f∗(X).

Proof. By contraposition.

If f∗(X) is disconnected then there exist open sets Y1 and Y2 such that f∗(X) = Y1∪Y2 with Y1∩Y2 = ∅.

Then
X = f∗(f∗(X)) = f∗(Y1 ∪ Y2) = f∗(Y1) ∪ f∗(Y2)

where f∗(Y1) ∩ f∗(Y2) = f∗(Y1 ∩ Y2) = f∗(∅) = ∅, showing that X is disconnected.

Hence, if X is connected, then f∗(X)must be connected.

Definition 2.10. A topological space (X, τ) is compact if for every open cover of X there exists a finite
subcover of X.

The continuous image of a compact set is another compact set.

Theorem 2.11. Let f : X → f∗(X) be continuous. If X is compact then so is f∗(X).

Proof. Suppose that f is continuous and X is compact, and letU = {Uι}ι∈J be an open cover of f∗(X).

Since f is continuous, each f∗(Uι) is open, and

X = f∗(f∗(X)) = f∗

(⋃
ι

Uι

)
=
⋃
ι

f∗ (Uι) ,

i.e. V = {f∗(Uι)}ι∈J is an open cover for X.

Since X is compact, we can reduce this to a finite subcover V ′ = {f∗(Ui)}
n
i=1. But then

f∗(X) = f∗

(⋃
i

f∗(Ui)

)
=
⋃
i

f∗(f
∗(Ui)) =

⋃
i

Ui,

where the last equality follows since f is surjective.

Since we have found a finite subcover for f∗(X), it follows that f∗(X)must also be compact.
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Cost of Operations

To check if some subset is open or closed is relatively simple: just check if it’s in the topology. That is,
determining openness or closedness isO(1). To check if something is compact, however, you need to
test a finite cover; to check if something is connected, you need to check an entire intersection. So both
compactness and connetedness areO(n) to verify.

Now observe that computing a direct image isO(1), but unless you have inside information about the
function, computing a preimage isO(n).

That is, checking openness/closedness is an easy peek because we already did the global work when we
obtained the preimage map, but since direct image only pokes pointwise into the domain, it takes strong
conditions such as connectedness or compactness to even make sense of global data via pushforward.

Neighborhoods and Points

Definition 2.12. Let X be a topological space, S ⊆ X.

A neighborhood of S is a subset V of X containing an open setU containing S:

S ⊆ U ⊆ V ⊆ X.

In particular, we are usually interested in the case when S is just a single point.

Consider a subset S of a topological space X.

• A point x is an interior point of S if S is a neighborhood of x. The set of all interior points of S is
called the interior of S and is denoted S◦.

• A point x is a boundary point of S if all neighborhoods of x contain at least one point in S and
one point not in S. The set of all boundary points of S is called the boundary of S and is denoted
∂S.

• A point x is a limit point of S if all neighborhoods of x contain at least one point of S different
from x itself. Note that a limit point of S does not have to be an element of S. The union of Swith
the set of all limit points of S is called the (topological) closure of S and is denoted S.

Theorem 2.13. Let S be a subset of a topological space X.

Then S is open if and only if S = S◦, and S is closed if and only if S = S.

Proof. Suppose S is open. Clearly we always have S◦ ⊆ S, so it remains to show S ⊆ S◦. Let x ∈ S. Since
S is open, S is a neighborhood of x:

x ∈ S ⊆ S ⊆ X.

So x ∈ S◦. Conversely, suppose S ⊆ S◦. Then every point of S is an interior point, that is, for every point
x ∈ S there exists an open setUx such that x ∈ Ux ⊆ S. Then

⋃
x∈S Ux = S, and since S is a union of

open sets, Smust itself be open.
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Now suppose S is closed. Clearly we always have S ⊆ S, so it remains to show S ⊆ S. Let x ∈ S. Then
either x ∈ S or x is a limit point of S. Suppose x /∈ S and x is a limit point of S. If S is closed, then Sc is
open. If x /∈ S, then necessarily x ∈ Sc. Note that Sc is a neighborhood of x by the same trick as before.
However, since x is a limit point of S, we see Sc must contain a point of S (distinct from x), contradiction.
So we must have x ∈ S.

Conversely, suppose every limit point of S is itself in S. Let x ∈ Sc. Since x is not in S, x is not a limit point
of S. Thus it is not the case that all neighborhoods of x contain at least one point of S different from x

itself. Thus there exists a neighborhood of x that does not contain any points of S, which amounts to there
being an open setU such that x ∈ U and such thatU is contained within Sc. Thus Sc is a neighborhood
of x, which means every point in Sc is an interior point, which means Sc is open, hence S is closed.

Theorem 2.14. Let X be a topological space, S ⊆ X.

1. Suppose S ′ ⊆ S. Then (S ′)◦ ⊆ S◦.

2. Suppose S ⊆ S ′′. Then S ⊆ S ′′.

3. S◦ is the largest subset of S that is open in X.

4. S is the smallest set containing S that is closed in X.

Proof.

1. Let x ∈ (S ′)◦. Then x is an interior point of S ′, i.e. there is some Ux open in X such that
x ∈ Ux ⊆ S ′. But S ′ ⊆ S, so we also have x ∈ Ux ⊆ S. Hence x is an interior point of S, i.e.
x ∈ S◦.

2. Let x ∈ S. Then x is a limit point of S. Suppose V is a neighborhood of x. Since x is a limit point,
there is some y ∈ V ∩ S such that y ̸= x. But S ⊆ S ′′, so y ∈ V ∩ S ′′ and still y ̸= x. Hence x is
a limit point of S ′′, i.e. x ∈ S ′′.

3. Let S ′ be open in Xwith S ′ ⊆ S. Then S ′ = (S ′)◦ ⊆ S◦.

4. Let S ′′ be closed in Xwith S ⊆ S ′′. Then S ⊆ S ′′ = S ′′.

Moore-Smith Convergence

Definition 2.15. Directed set.

Products of Compacts are Compact

One form of the Axiom of Choice is that a Cartesian product of nonempty sets is itself nonempty. Sur-
prisingly, this fact is equivalent to something much stronger: a Cartesian product of compact topological
spaces given the product topology is itself compact. This is due to how coarse the product topology is.



10 CHAPTER 2. THE TOPOLOGICAL PERSPECTIVE

Three Separation Axioms

Definition 2.16. Let (X, τ) be a topological space. We say (X, τ) is...

• T0 if for any a, b ∈ Xwith a ̸= b there existsU ∈ τ such that

(a ∈ U) ̸= (b ∈ U).

• T1 if
p ∈ X ≤ pc ∈ τ.

• T2 orHausdorff if for any a, b ∈ Xwith a ̸= b there areA,B ∈ 2X such that

a ∈ A◦ ∧ b ∈ B◦ ≤ A ∩ B = ∅.

Summarizing:

points in T0 spaces can be distinguised via open sets;
points in T1 spaces are closed;
points in T2 spaces may be separated by neighborhoods.

Theorem 2.17. Every Hausdorff space is T1. Every T1 space is T0.

Proof. Let X be Hausdorff with x ∈ X. Suppose y ∈ X \ x. Then y ̸= x, so by Hausdorff there exist
A,B ∈ 2X such that x ∈ A◦, y ∈ B◦,A ∩ B = ∅. Now observe that

y ∈ B◦ ⊆ B ⊆ X \A ⊆ X \A◦ ⊂ X \ x,

so every point inX \ x is an interior point, i.e. X \ x ∈ τ, so x ∈ τc. Hence, all points ofX are closed, i.e.
X is T1.

Now let X be T1 with x, y ∈ X such that x ̸= y. LetU = X \ x. ThenU ∈ τ via T1. At the same time,
x /∈ U and y ∈ U, which implies

(x ∈ U∨ y ∈ U)∧ (x /∈ U∨ y /∈ U)

i.e. (x ∈ U) ̸= (y ∈ U), hence X is T0.

Now for some examples to complete the picture:

• Let (X, τ) beRwith the cofinite topology, whereinU ∈ τ exactly when X \U is finite.

Since X \ x ∈ τ for any x ∈ X by definition, we have x ∈ τc for any x ∈ X, i.e. X is T1. Pick x, y ∈ Xwith
x ̸= y, and suppose there wereA,B ∈ 2X such that x ∈ A◦, y ∈ B◦. Note thatA◦ ∈ τ and B◦ ∈ τ, so
X \A◦ andX \B◦ are both finite, i.e. (X \A◦)∪ (X \B◦) is also finite (finite unions of finite sets are finite),
henceX \ (A◦ ∩ B◦) is also finite by de Morgan’s laws. ButR is uncountable, which meansA◦ ∩ B◦ is also
uncountable, in particularA◦ ∩ B◦ is nonempty. And sinceA◦ ∩ B◦ ⊂ A∩ B, it follows thatA∩ B is also
nonempty. This implies that given any open neighborhoodA of x and any open neighborhood B of y, we
always haveA ∩ B ̸= ∅. Hence, X is not Hausdorff.
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• Let (X, τ) be the Sierpinski space, i.e. (X, τ) = ({0, 1}, {∅, {1}, {0, 1}}).

Note that {1} is an open set such that 0 /∈ {1} but 1 ∈ {1}, which implies (0 ∈ {1} ∧ 1 ∈ {1}) ∨ (0 /∈
{1} ∧ 1 /∈ {1}), i.e. (0 ∈ {1}) ̸= (1 ∈ {1}), so X is T0. But by defininition, the closed sets of X are∅, {0},
and X, i.e. the point 1 is not closed, so X is not T1.

Theorem 2.18. A compact subset of a Hausdorff space is closed.

Proof. LetX be Hausdorff withK ⊆ X compact. Take x ∈ X \ K. Then by Hausdorffness ofX, for each
y there exist disjoint open subsetsUy and Vy such that x ∈ Uy and y ∈ Vy. The Vy form an open cover
ofK, so by compactness ofKwe may reduce this to a finite subcover (Vi)i∈F where F ⊆ K finite. Let

U =
⋃
y∈F

Uy.

ThenU is an open neighborhood of x disjoint fromK. This implies that x is actually an interior point.
Since an arbitrary point of X \ K is interior, it follows that X \ K is open. Hence,K is closed.

Theorem 2.19. A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

Proof. Let X be compact, Y be Hausdorff, f : X → Y a continuous bijection with inverse g : Y → X.
Let K ∈ X be closed. A closed subset of a compact space is itself compact. Thus K is compact, so
f∗(K) = g∗(K) is compact. A compact subset of a Hausdorff space is closed, so g∗(K) is closed. This
shows that the preimage of any arbitrary closed set K is also closed, so g is continuous. Hence, f has
continuous inverse and is thus a homeomorphism.
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2.2 Distance

One thing you might pick up on from reading the last section is that, in principle, topology could have
developed without the real numbers. However, that is not how the theory progressed. Rather, since
mathematicians were aware ofR while topologies were first specified, most of the theory is concentrated
on how to leverageR to better understand topological spaces.

The category of metric spaces,Met, is the canonical example. Here, the lever is distance.

Definition 2.20. Let X be a set. A distance on X is a function

d : X× X → R

satisfying the following properties:

1. d(x, y) ≥ 0with d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

we call the ordered pair (X, d) ametric space.

One exception: when we do constructR, our distance functions will beQ–valued (to avoid circularity).

[add illustration: open ball, closed ball, sphere in the plane.]

Definition 2.21. Let (X, d) be a metric space. For x ∈ X and r ≥ 0, define:

• The open ball centered at x of radius r: B(x, r) = {p ∈ X : d(x, p) < r}

• The closed ball centered at x of radius r: B(x, r) = {p ∈ X : d(x, p) ≤ r}

• The sphere centered at x of radius r: S(x, r) = {p ∈ X : d(x, p) = r}

Amildly amusing phenomenon is that the closed ball isn’t always properly contained within the closure
of its corresponding open ball (though the opposite containment does always hold):

Theorem 2.22. In general metric spaces we do not necessarily have B(x, r) = B(x, r).

Proof. Take X = {0} ⊆ Rwith d(x, y) = |x− y|. Then B(0, 0) = {0} but B(0, 0) = ∅ = ∅.
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Theorem 2.23. Metric spaces form topological spaces.

Proof. Let (X, d) be a metric space. Now define an open set in X to be an arbitrary union of open balls:

U ∈ τ := U =
⋃
ι∈J

B(xι, rι).

We now check the axioms for a topological space.

• We have
∅ =

⋃
x∈X

B(x, 0) and X =
⋃
x∈X

B(x, 1).

• Arbitrary unions of arbitrary unions of open balls form arbitrary unions of open balls:⋃
α∈A

⋃
ι∈Jα

B(xι, rι) =
⋃

ι∈
⋃
α∈A

Jα

B(xι, rι).

• Finite intersections of arbitrary unions of open balls form arbitrary unions of open balls:

This is slightly trickier, but still doable. For shorthand, write Bι = B(xι, rι). We note that the
intersection of two open balls B1 and B2 can be written as an arbitrary union of open balls:

B1 ∩ B2 =
⋃

p∈B1∩B2

B
(
(p,min

(
{r1 − d(x1, p), r2 − d(x2, p)}

))
Thus, the intersection ofUA =

⋃
α∈A Bα andUJ =

⋃
ι∈J Bι can be written as follows:

UA ∩UJ =

(⋃
α∈A

Bα

)⋂(⋃
ι∈J

Bι

)
=
⋃
α∈A

(
Bα ∩

(⋃
ι∈J

Bι

))

=
⋃
α∈A

⋃
ι∈J

(
Bα ∩ Bι

)
=

⋃
(α,ι)∈A×J

(
Bα ∩ Bι

)

=
⋃

(α,ι)∈A×J

⋃
p∈Bα∩Bι

B
(
p,min

(
{rα − d(xα, p), rι − d(xι, p)}

))

=
⋃

p ∈
⋃

(α,ι)∈A×J

Bα ∩ Bι

B
(
p,min

(
{rα − d(xα, p), rι − d(xι, p)}

))
.

This completes the verification of the topological space axioms.

The topology τ generated by these arbitrary unions of open balls is called themetric topology.
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Theorem 2.24. Metric spaces are Hausdorff.

Proof. Let (X, d) be a metric space, x, y ∈ X such that x ̸= y, and let r = d(x, y). Then

B(x, r/3) ∩ B(y, r/3) = ∅

which shows that any pair of distinct points can be separated by neighborhoods.

Continuous Functions

Since we have a distance function while working inMet, there are actually two competing definitions
for what it means to be a continuous function: there is the ε–δ characterization, and then there is also
openness of open preimages. InTop generally, these definitions need not coincide.

We now show that these two things are exactly the same inMet.

Theorem 2.25. Let (X, dX) and (Y, dY) be metric spaces with topologies τX and τY , f : X → Y. Then

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀x ′ ∈ X, d(x, x ′) < δ ≤ d(f(x), f(x ′)) < ε (ε–δ)

exactly when
∀Z ∈ 2Y ((Z ∈ τY) ≤ (f∗(Z) ∈ τX)) (PRE)

Proof. (PRE) ≤ (ε–δ): Suppose (PRE). Let x ∈ X, ε > 0, W = B(f(x), ε). Since W ∈ τY ,
f∗(W) ∈ τX by (PRE). So f∗(W) = f∗(W)◦, i.e. B(x, r) ⊆ f∗(B(f(x), ε)). Pick δ = r. Let x ′ ∈ X.

d(x, x ′) < δ ≤ x ′ ∈ B(x, δ)

≤ x ′ ∈ f∗(B(f(x), ε))

≤ f(x ′) ∈ B(f(x), ε)

≤ d(f(x), f(x ′)) < ε.

Hence, (ε–δ).

(ε–δ) ≤ (PRE): Suppose (ε–δ), and letW ∈ τY . ThenW =
⋃

ι∈J B(yι, rι), so

f∗(W) =
⋃
ι∈J

f∗(B(yι, rι)).

[add an illustration here eventually]

Let a ∈ f∗(B(yι, rι)), ε = rι − d(f(a), yι). Then there exists δ such that

B(a, δ) ⊆ f∗(B(f(a), ε)) ⊆ f∗(B(yι, rι)).

But awas arbitrary, so f∗(B(yι, rι)) ∈ τX, and by closure of open sets with respect to arbitrary unions,

f∗(W) ∈ τX.

Hence, (PRE).
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Uniform and Lipschitz Continuity

Definition 2.26 (Uniform Continuity). Let (X, dX) and (Y, dY) be metric spaces and let f : X → Y.

We recall that f is pointwise continuous (or simply continuous) if

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀x ′ ∈ X dX(x, x
′) < δ ≤ dY(f(x), f(x

′)) < ε.

We say that f is uniformly continuous if

∀ε > 0 ∃δ > 0 ∀x ∈ X ∀x ′ ∈ X dX(x, x
′) < δ ≤ dY(f(x), f(x

′)) < ε.

Definition 2.27 (Lipschitz Continuity). Let (X, dX) and (Y, dY) be metric spaces and let f : X → Y.

If there is some c ≥ 0 such that

∀x, x ′ ∈ X dY(f(x), f(x
′)) ≤ c dX(x, x

′)

then we say that f is c–Lipschitz. The constant c is known as the Lipschitz constant of f.

Theorem 2.28. Every Lipschitz function is uniformly continuous.

Proof. Pick δ = ε/c.

Example: Distance from a Set

Definition 2.29. Let (X, d) be a metric space and let Z ⊆ X.

d(x, Z) = inf
z∈Z

d(x, z).

Theorem 2.30. Distance from a set is 1-Lipschitz.

Proof.

The Lebesgue Covering Lemma

Definition 2.31. Let (X, d) be a metric space, and letO = {Uι}ι∈J be an open cover of X.

A Lebesgue number is a number δ > 0 such that:

every subset of X having diameter less than δ is contained in someUι ∈ O.

Theorem 2.32 (Lebesgue Covering Lemma).

Let (X, d) be a compact metric space and letO = {Uι}ι∈J be an open cover of X.

ThenO admits a Lebesgue number.
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Proof. Since X is compact, we may reduce to some finite subcoverOfin.

Let x ∈ X. Then x ∈ U◦ = U for someU ∈ Ofin. Since ∂U is compact (closed subset ofU bounded by
X),

min
p∈∂U

d(x, p)

is well-defined (by compactness) and positive (since x ∈ U◦). Note, however, that there could be multiple
Ui ∈ Ofin containing x, so

max
Ui∋x

min
p∈∂U

d(x, p)

is also well-defined (since the max is over a finite set) and positive (max of positive set). But X is compact,
so

m = min
x∈X

max
Ui∋x

min
p∈∂U

d(x, p)

is also well-defined (by compactness of X) and positive (min of positive set). Let δ = m/2.

Now suppose z ∈ Z ⊆ Xwhere diamZ = inf z,z ′∈Z d(z, z ′) < δ. Then for z ′ ∈ Z,

d(z, z ′) ≤ diamZ < δ =
1

2
min
x∈X

max
Ui∋x

min
p∈∂U

d(x, p)

≤ 1

2
max
Ui∋z

min
p∈∂U

d(z, p)

=
1

2
min

p∈∂Umax

d(z, p)

for someUmax ∈ Ofin. Since everything defined in sight has been continuous,Umax doesn’t jump around
(though it may be nonunique). The above inequality asserts that any point z ′ away from z doesn’t venture
outside the boundary of someUmax. Hence Z ⊆ Umax, which completes the proof.

Continuity on Compacts is Uniform

Pointwise continuity is a local property of f, whereas uniform continuity is a global property of f.

Theorem 2.33 (Heine-Cantor). Let X and Y be metric spaces with f : X → Y a continuous function.

Suppose X is compact. Then f is uniformly continuous.

Proof. Let ε > 0. Then ε/2 > 0 as well, so for every x ∈ X there exists some δx,ε/2 such that

f∗(B(x, δx,ε/2)) ⊆ B(f(x), ε/2).

Observe that
Oε = {B(x, δx,ε/2) : x ∈ X}

forms an open cover of X. Since X is compact,Oε admits a Lebesgue number λ. Pick δ = λ/2.

Suppose x0, x1 ∈ Xwith d(x0, x1) < δ. Then B(x0, δ) has diameter λ, so

B(x0, δ) ⊆ B(x, δx,ε/2)
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for some x ∈ X, i.e. B(x0, δ) is contained within some element ofOε. But then

f∗(B(x0, δ)) ⊆ f∗(B(x, δx,ε/2) ⊆ B(f(x), ε/2)

so f(x0) and f(x1) are both contained within the ball B(f(x), ε/2). But this ball has diameter ε, which
implies

d(f(x0), f(x1)) < ε.

Hence pointwise continuity of f on X compact implies uniform continuity of f.

2.3 Completeness

Completions: Unique up to Isometry

Theorem 2.34. If a metric space completion exists, it is unique up to isometry.

Proof. Let X be a metric space and let X∗, X∗∗ be completions of X.

Every x∗ ∈ X∗ has a Cauchy sequence (xn)n ⊂ X such that xn → x∗ by completeness of X∗. But by
completeness of X∗∗, we have xn → x∗∗ for some x∗∗ ∈ X∗∗. Note that if yn → x∗ then yn − xn → 0,
hence yn → x∗∗; that is, the map f : X∗ → X∗∗ given by f(x∗) = x∗∗ is well defined. Note that f(x) = x

for all x ∈ X.

Now suppose xn → x∗, yn → y∗ in X∗ and also xn → x∗∗, yn → y∗∗ in X∗∗. Then

d∗(x
∗, y∗) = lim

n→∞d∗(xn, yn)

= lim
n→∞d(xn, yn)

= lim
n→∞d∗∗(xn, yn) = d∗∗(f(x

∗), f(y∗)),

so f is an isometry.

This result can actually be strengthened to “unique up to unique isometry,” though we won’t do this.

Completions: Existence

Note: this proof depends on the existence and completeness of the real numbersR, a fact that we prove in
the next section. Since we give that proof in full detail, we move somewhat briskly through the general
case.

The proof is adapted from an argument given in Kolmogorov and Fomin.

Theorem 2.35. Let (X, d) be a metric space. Then a completion of X exists.

Proof. Declare two Cauchy sequences (xn)n and (yn)n in X to be equivalent if

lim
n

d(xn, yn) = 0,
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and denote the set of equivalence classes by X∗. Define the distance between two points x∗, y∗ ∈ X∗ via

d∗(x
∗, y∗) = lim

n
d(xn, yn)

where (xn)n is any representative of x∗ and (yn)n is any representative of y∗. This map is well-defined
(i.e. does not depend on the choice of equivalence class representative) and is in fact a distance.

For x ∈ X, associate in X∗ the equivalance class x∗ of Cauchy sequences converging to x (for example,
an easy to write down representative of this class would be (x, x, x, . . . )), so that when x ∈ X, we also
have x∗ ∈ X via some nice representative, i.e. so that it makes sense to speak of d (limn xn, limn yn) in
the special case where (xn)n and (yn)n are constant sequences in X.

Recall that metrics respect convergence of sequences, i.e.

d
(
lim
n

xn, lim
n

yn

)
= lim

n
d(xn, yn).

But by definition,
lim
n

d(xn, yn) = d∗(x
∗, y∗)

i.e. the map (·)∗ : (X, d) → (X∗, d∗) given by x 7→ x∗ is an isometry! We now proceed as if X ⊂ X∗.

Now let x∗ ∈ X∗ and ε > 0. LetN ∈ N be such that forN < n,mwe have d(xn, xm) < ε. Then

d(xn, x
∗) = lim

m
d(xn, xm) < ε

so X = X∗; that is, X is dense in X∗.

By the above density result, given aCauchy sequence (x∗n)n ⊂ X∗ there always exists a sequence (xn)n ⊂ X

equivalent to (x∗n)n (simply pick xn to be within 1/n of x∗n). Since xn → x∗ ∈ X∗, we have x∗n → x∗ ∈
X∗ as well via equivalence of the two sequences, i.e. X∗ is complete.

The Banach Fixed-Point Theorem

Definition 2.36. Let (X, d) be a metric space, f : X → X.

We say f forms a contraction mapping if there is some α ∈ [0, 1) such that

d(f(x), f(y)) ≤ αd(x, y)

for all x, y ∈ X.

Theorem 2.37 (Banach fixed-point theorem). Let (X, d) be a nonempty complete metric space with a
contraction mapping f : X → X. Then f admits a unique fixed point x∗ ∈ X so that f(x∗) = x∗.

Proof. Let x0 ∈ X and define

(xn)n = (x0, A(x0), A
2(x0), . . . )
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whereAn(x) = An−1(A(x)). For n ≤ m,

d(xn, xm) = αnd(x0, xm−n) ≤ αn (d(x0, x1) + · · ·+ d(xm−n−1, xm−n)) ≤
αn

1− α
d(x0, x1),

i.e. (xn)n is Cauchy. By completeness of (X, d)we may write

xn → x∞
and by Lipschitz continuity ofA (see below), x∞ = A(x∞). This proves existence of a fixed point x∞.

To show uniqueness, note that(
A(x∞) = A(y∞)

)
≤

(
d(x∞, y∞) ≤ αd(x∞, y∞)

)
and since 0 ≤ α < 1, we must have x∞ = y∞.

2.4 The Continuum

Theorem 2.38 (Construction ofR). A completion ofQ exists.

Proof. LetR = κ(Q )/m0.

From previous work we know thatR is an archimedean ordered field, which means thatQ ⊆ R. We need
to show that the completion ofQ isR and thatR is a complete metric space.

For elements α = (an)n, β = (bn)n of κ(Q ), define

dR([α], [β]) = [(dQ (an, bn))n].

By a previous proposition,

|dQ (am, bm) − dQ (an, bn)| ≤ dQ (am, an) + dQ (bm, bn),

i.e. the sequence of distances is Cauchy because α and β are.

We claim that
(α ∼ β) = (dR([α], [β]) = 0R).

Indeed, α ∼ β if and only if for every ε ∈ Q+ there is some Nε ∈ Z+ such that for all n ≥ Nε,
dQ (an, bn) < ε. But

(dQ (an, bn) < ε) = (dQ (dQ (an, bn), 0) < ε)

so the condition is equivalent to dR([α], [β]) = 0R.

Another claim: the distance doesn’t depend on equivalence class representative. This is easily shown if we
know that dR satisfies the triangle inequality, because then, if α ∼ α ′ and β ∼ β ′, we have

dR([α], [β]) ≤ dR([α], [α
′]) + dR([α

′], [β ′]) + dR([β
′], [β]) = dR([α

′], [β ′])
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dR([α
′], [β ′]) ≤ dR([α], [α

′]) + dR([α], [β]) + dR([β
′], [β]) = dR([α], [β])

showing that dR([α], [β]) = dR([α
′], [β ′]).

Let α = (an)n, β = (bn)n, γ = (cn)n be in κ(Q ). Verifying the triangle inequality comes down to
showing that

[(dQ (an, bn))n] ≤ [(dQ (an, cn) + dQ (cn, bn))n].

Suppose equality does not hold. Then there exists an ε ∈ Q+ such that for allN ∈ N++ there is some
n0 ≥ N such that

dQ (dQ (an0
, cn0

) + dQ (cn0
, bn0

), dQ (an0
, bn0

)) ≥ ε

Wemay use the n0 indices to build subsequences such that there is some ε ∈ Q+,M ∈ Z+ such that for
allm ≥ M,

dQ (am, bm) < dQ (am, cm) + dQ (cm, bm) + ε.

So the triangle inequality holds, which implies that the distance is well-defined.

Since dR is built from dQ , it is both symmetric and nonnegative. We just checked the triangle inequality,
and the fact that distance zero implies points are equal is a consequence of how we defined the quotient
space κ̂(Γ). So dR is a metric, which makes (R, dR) a metric space.

Since real numbers are equivalence classes of Cauchy sequences, any open neighborhood of [α] ∈ R will
contain the tail of every sequence (an)n ∈ [α], i.e. every open neighorhood of every point inR contains
at least one rational. SoQ is dense inR.

We now show that (R, dR) is complete.

Let Ξ = (ξn)n where ξn = [(x(m,n))m] be a Cauchy sequence of real numbers. Then for every ε ∈ Q+

there is someNε ∈ N++ such that for all n,n ′ ≥ Nε there is someMn,n ′ ∈ N++ such that for all
m ≥ Mn,n ′ ,

dQ (x(m,n), x(m,n ′)) < ε.

Further, each ξn is Cauchy, so for every n ∈ N++ and ε ∈ Q+ there is someMn,ε ∈ N++ such that for
m,m ′ ≥ Mn,ε, we have

dQ (x(m,n), x(m ′,n)) < ε.

Since we have equivalence classes, we may work with convenient (i.e. rapidly converging) representatives
from each class. That is, we may assume that for allm,m ′, n ∈ Z+, we have

dQ (x(m,n), x(m ′,n)) < 2−min({m,m ′}).

Let ε ∈ Q+, and pickN = max({Nε/2, ⌈1− log
2
(ε)⌉}). so that

2−N < 2−(1−log2(ε)) = ε/2.

Then

dQ (x(n,n), x(n ′,n ′)) ≤ dQ (x(n,n), x(n,n ′)) + dQ (x(n,n ′), x(n ′,n ′)) < ε/2+ ε/2 = ε

so ξ∞ ∈ R. Further,

dQ (x(m,n), x(n,n)) ≤ dQ (x(m,n), x(m,m)) + dQ (x(m,m), x(n,n)) < ε/2+ ε/2 = ε,

so ξn → ξ∞. This shows thatR is complete, which ends the proof.
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Forms of Completeness

0. Archimedean Property: Let α,β ∈ R. Then ∃N ∈ N such that α < Nβ.

1. Cauchy Completeness: Let (xi)i ⊂ R. If (xi)i is Cauchy, then xi → x∞ for some x∞ ∈ R.

2. inf/sup Completeness: Let S ⊆ R be nonempty.
If S is bounded above, then supS exists. If S is bounded below, then inf S exists.

3. Interval Refinement Property: Let ([xi − ϵi, xi + ϵi])i be a sequence of closed intervals such
that

[x0 − ϵ0, x0 + ϵ0] ⊃ [x1 − ϵ1, x1 + ϵ1] ⊃ [x2 − ϵ2, x2 + ϵ2] ⊃ · · ·

with ϵi → 0. Then the intersection
⋂

i[xi − ϵi, xi + ϵi] is nonempty.

4. Monotone Convergence Theorem: Let (xi)i ⊂ R. If (xi)i is either strictly increasing and
bounded above or strictly decreasing and bounded below, then xi → x∞ for some x∞ ∈ R.

5. Bolzano-Weierstrass Theorem: Let (xi)i ⊂ R. If (xi)i is bounded, then ∃(xσ(i))i ⊆ (xi)i such
that xσ(i) → x∞ for some x∞ ∈ R.

6. Intermediate Value Theorem: Let a, b ∈ Rwith a < b and let f : [a, b] → R be continuous.
If f(a) < 0 < f(b), then f(c) = 0 for some c ∈ (a, b).

Theorem 2.39. Suppose 0 holds. Then 1 through 6 are logically equivalent.

Proof. We’ll do 1 ≤ 2 ≤ 3 ≤ 1 and then 2 ≤ 4 ≤ 5 ≤ 6 ≤ 2.

1 ≤ 2 Suppose S ⊂ R is nonempty and bounded above. Let s0 ∈ S and letM0 be an upper bound of
S. Construct (si)i and (Mi)i as follows: if si+Mi

2
is an upper bound of S, set (si+1,Mi+1) =

(si,
si+Mi

2
). Otherwise there is some x ∈ S such that x ≥ si+Mi

2
, and in this case we set

(si+1,Mi+1) = (x,Mi). The sequence (s0,M0, s1,M1, s2,M2, . . . ) is Cauchy, since |si+1 −
Mi+1| ≤ 1

2
|si − Mi|. Let α be the limit of this sequence. ThenMi → α and si → α. So α

is an upper bound of S, for if there were some α ′ such that α < α ′ < Mi for all i ∈ N, then
α ′ −αwould be an ϵ such that |α−Mi| > ϵ for all i ∈ N, which cannot happen sinceMi → α.
Furthermore, since si → α, for every ϵ > 0 there is some i ∈ N such that α− si < ϵ, which is
precisely the supremum condition.

2 ≤ 3 Suppose we have a sequence of nested closed intervals ([xi − ϵi, xi + ϵi])i with ϵi → 0. The set
S = (xi − ϵi)i is nonempty and bounded above by xi+ϵi for all i ∈ N, and thus has a supremum.
Let α = supS. Then since α is an upper bound of S, xi − ϵi ≤ α for all i ∈ N. But since α is
the least upper bound, any upper bound will be at least α, in particular α ≤ xi + ϵi for all i ∈ N.
Combining these two facts, we see that α ∈ [xi − ϵi, xi + ϵi] for all i ∈ N, i.e. the intersection⋂

i[xi − ϵi, xi + ϵi] contains α and is thus nonempty.
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3 ≤ 1 Suppose (xi)i ⊂ R is Cauchy. Let ai = min {xj : i < j}, bi = max {xj : i < j}. Then for every
ϵ > 0 there is someN ∈ N such that for all i ≥ Nwe have bi − ai < ϵ. In particular for every
i ∈ N there is some σ(i) ∈ N such that bσ(i) − aσ(i) < 2−i. We then have

[aσ(0), bσ(0)] ⊃ [aσ(1), bσ(1)] ⊃ [aσ(2), bσ(2)] ⊃ · · ·

withbσ(i)−aσ(i) → 0, so the intersection
⋂

i[aσ(i), bσ(i)] is nonempty. Pick x∞ ∈
⋂

i[aσ(i), bσ(i)].
Now, aσ(i) < x∞ < bσ(i) for all i ∈ N, so

0 < x∞ − aσ(i) < bσ(i) − aσ(i) and aσ(i) − bσ(i) < x∞ − bσ(i) < 0

for all i ∈ N. By the squeeze theorem, we have both ai → x∞ and bi → x∞. At least one of
{(aσ(i))i, (bσ(i))} attains infinitely many distinct values, let’s say (aσ(i))i does this. Construct the
sequence (ci)i to be (aσ(i))i without repeats. This is a subsequence of both (aσ(i))i and (xi)i. But
aσ(i) → x∞, so ci → x∞, hence xi → x∞.

2 ≤ 4 Let (xi)i ⊂ R be strictly increasing and bounded above. Then α = sup
i
xi exists. Let ϵ > 0.

Then there is some xi such thatα < xj + ϵ for all j > i, hence |α− xj| < ϵ for all j > i, showing
xj → α.

4 ≤ 5 Suppose (xi)i ⊂ R is bounded. Take the subsequence (xσ(i))i = (min{xj : j < i})i. This
sequence is strictly decreasing and bounded below, so it converges to some x∞.

5 ≤ 6 Let f : [a, b] → R be continuous. Take the sequence (xi)i that goes

a, b,
a+ b

2
,

3a+ b

4
,

a+ 3b

4
,

7a+ b

8
,

5a+ 3b

8
, · · ·

this sequence is dense in [a, b]. Since continuous functions map dense subsets to dense subsets,
f∗([a, b]) ∩ [f(a), f(b)] forms a dense subset of [f(a), f(b)]. Construct the infinite array of
subsequences by stipulating that row n of the array consists of the subsequence of (xi)i for which
f(xi) ∈ [f(a)/n, f(b)/n] for all terms in the n − 1th row (take row 0 to be (xi)i). By density,
the rows of this infinite array are nonempty, in fact each row has infinitely many entries. Since the
terms of the infinite array are bounded, it follows that the leftmost column of the array is bounded.
Thus the leftmost column has a convergent subsequence. By sequential continuity of f, the image
of this convergent subsequence is itself a convergent sequence. Due to how the infinite array of
subsequences was constructed, though, the image of the limit of the convergent subsequence has
no choice but to be 0. So the limit of the leftmost column sequence is a c such that f(c) = 0.

6 ≤ 2 Let S ⊂ R be nonempty and bounded above and suppose that supS does not exist. Let T be the
set of all upper bounds of S, and define f : R → R to take the values−1 onR \ T and 1 on T .
Then f is continuous, but for all x ∈ R, we have f ̸= 0, thereby falsifying the intermediate value
theorem. So by contraposition, supSmust exist.

Hence, 1 through 6 are logically equivalent given 0.


