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Chapter 2

The Topological Perspective

2.1 Nearness

This section’s introduction was adapted from Vickers’ book “Topology via Logic.”

When you measure a physical property that takes values in R, the resulting measurement quantity is always
some T € Q up to some positive rational error € € Q*.

What the mesurement approximates, that is, the actual value, may in fact be some real x:
X€E (r—egr+¢).

However, if the ideal range for x is some possibly irrational interval U (where “ideal range” could mean,
say, the most precise range of physically meaningful measurements) then the best we could do is

UC (r—egr+e)
for increasingly narrow intervals.

For example, if one measurement leads us to believe that U C (1, 2) but another says U C (2, 3), then
we do NOT have U = 2, but rather a defective system of measurement U = &, from which we may
deduce nothing at all.

Thus, finite intersections either refine U or invalidate the existence of U altogether.

Suppose we wanted a precise description of U in terms of measurements we are actually able to make, i.e.
rational intervals. We will prove in this chapter that Q is dense in R.

Theorem 2.1. Between any two a,b € Rsuch that a < b, thereisc € Q N (a,b).
The boundary of U is exactly some (possibly irrational) distance & away from x:

(x—0,x+0) C U.
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Think of this interval as zooming in on a subset of U with a magnifier of some sort. If we can make
arbitrarily precise rational measurements, then we may pick 1, ¢ € Q such thatx —6/2 < r < x and
X —T < & <1 — (x — ) and then (this takes some effort) we get:

xer—gr+e)C(x—8,x+8)CU

and in this way we may recover U as an aribtrary union of rational intervals.

Note that since x is always properly contained within (1 — €, 1 + €) and hence U, the value x may zever
lie on the boundary of U! Thus, we have a fairly precise description of U.

The interval U abstracts to the idea of an open set.

Open vs Closed

Definition 2.2. Let X be a set. A topology on X consists of a set of open sets T C 2 satisfying:

e geTtand X ET

¢ T is stable under finite intersections
n
(X)L, € 1) < (ﬂ Xi € T) .

* Tis stable under arbitrary unions

We call (X, T) a topological space. Here, “stable” refers to the property that operating on the input
wihtin a given setting produces an output that stays within that setting.

Every topological space also has a set of closed sets T¢ satisfying:
e gettand X € 1€
* 1€ is stable under finite unions
* 7€ is stable under arbitrary intersections

As the notation suggests, (U € 1) = (U° € T°).
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Continuous Functions
Definition 2.3. Let (X, Tx) and (Y, Ty) be topological spaces. A function f : X — Y is continuous if
VZ €2"((Z € ty) < (f(Z) € ™))
i.e. if open sets on Y “pull back” to open sets on X.
Theorem 2.4. The identity map is continuous.
Proof. Follows from the fact that the domain of the identity map matches its codomain. O]

Theorem 2.5. Continuity is stable under composition.

Proof. Letf: X — Yand g:Y — Z with Uopenin Z. Then
(gof)"(U) = (f"og")(U) =1 (g"(U))

which is open in X. [

The Category Top

Topological spaces form the objects of a category called Top, a subcategory of Set. The arrows in Top
are continuous functions. As we observed, continuous functions are stable under composition and the
identity map is always continuous.

Further, continuity itself may be viewed as a funcror
T : Top®® — Poset
via T(X,Tx) = (tx, C) and T(f : (X, 7Tx) — (Y, Ty)) = * : (Ty, C) — (Tx, C), Where a functor
F:€—-D

is a map that respects the arrow structure of € and D. In particular, (-)P is the functor Cat — Cat which
takes categories in the 2-category of categories and reverses all of their arrows.

Examples
Here are some objects/arrows in Top.
These examples are mostly of an abstractly topological sort; more concrete examples will follow shortly.

o. The empty space (&, {@}). There is a unique continuous map fi;x going from the empty space into
any other topological space (X, T), wherein every preimage is empty: (&,{@}) is #nitial in Top.

1. The point space ({*},{,{*}}). There is a unique continuous map fg, going from any other
topological space (X, T) into the point space, wherein the preimage of the point is all of X and the
preimage of the empty set is empty: the point space is fzzal in Top.
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2. Let X be aset.

a) The coarsest (fewest open sets) example of a topology on X is
Trivial = {9, X}
b) The finest (most open sets) example of a topology on X is
Tdiscrete = 2.

3. Let X be a topological space and {Y, },cj an indexed family of topological spaces.

a) Suppose we have a family of functions
fo: X—=Y.

The initial topology is the coarsest topology on X that makes the f, continuous.

b) Now suppose we have a family of functions
fo:Y — X
The final topology is the finest topology on X that makes the f, continuous.

4. Recall that 2 = {0, 1}. The Sierpinski space (2,{@,{1}, 2}) is an example of a topological space
whose topology is neither trivial nor discrete. The space acts as a subobject classifier in Top: any char-
acterstic function Xy from X into the Sierpinski space is continuous exactly when U = x* ({1}).

5. A metric example which we will explore later, and perhaps the most tangible, is to consider R and
let the most basic open set be some interval (a, b) with a < b, so that arbitrary open sets are then
unions of these intervals. The resulting topology is called the Euclidean topology on R.

Projectors and Coprojectors

Example No. 3 above is paramount: several important spaces are constructed by considering initial and
final topologies with respect to a family of functions.

Let X be a topological space.

Definition 2.6. A subset Z C X can be viewed as a subspace of X when equipped with the subspace
topology, which is initial with respect to the coprojector map t : Z — X. Similarly, we may form a
quotient X/ ~ from an equivalence relation ~ defined on X, and this becomes a topological space when
equipped with the quotient topology, which is final with respect to the projector map 7w: X — X/ ~.

Now, let {X }.¢j be a collection of spaces.

Definition 2.7. If we want to treat each space X, as a subspace of a parent space L = ]—ILEI X,, then
taking the topology final with respect to the coprojectors i : Xj — X yields the coproduct topology.
Similarly, if we want to treat each space X, as a quotient of a parent space IT = Hle] X,, then taking the
topology initial with respect to the projectors p : IT — X, yields the product topology.
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Connectedness and Compactness

Definition 2.8. A topological space (X, T) is connected if there are no X;, X; € T such that X can be
written as X7 U X, with X; N X; = @.

The continuous image of a connected set is another connected set.
Theorem 2.9. Ler f: X — f.(X) be continnous. If X is connected then so is T, (X).

Proof. By contraposition.

If f,.(X) is disconnected then there exist open sets Y7 and Y, such that f, (X) = YUY, withY;NY, = @.

Then
X = f(f. (X)) = (YT UYy) = (Y1) U(Y2)

where £*(Y7) N *(Y,) = (Y1 NY;) = f*(&) = &, showing that X is disconnected.

Hence, if X is connected, then f, (X) must be connected. ]

Definition 2.10. A topological space (X, T) is compact if for every open cover of X there exists a finite
subcover of X.

The continuous image of a compact set is another compact set.
Theorem 2.1x. Let f : X — (X)) be continunous. If X is compact then so is £, (X).

Proof. Suppose that f is continuous and X is compact, and let U = {U, },¢j be an open cover of f, (X).

Since f is continuous, each f*(1,) is open, and

X = f*(f.(X)) = " (Uul> =Jr ),

ie. V = {f*(U,)}e is an open cover for X.

Since X is compact, we can reduce this to a finite subcover V' = {f*(U;)}I* ;. But then

f.(X) =1, (U f*(ui)) = Uf*(f*(ui)) = Uuia

where the last equality follows since f is surjective.

Since we have found a finite subcover for f, (X), it follows that f, (X) must also be compact. O
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Cost of Operations

To check if some subset is open or closed is relatively simple: just check if it’s in the topology. That is,
determining openness or closedness is O(1). To check if something is compact, however, you need to
test a finite cover; to check if something is connected, you need to check an entire intersection. So both
compactness and connetedness are O(n) to verify.

Now observe that computing a direct image is O(1), but unless you have inside information about the
function, computing a preimage is O(n).

That is, checking openness/closedness is an easy peek because we already did the global work when we
obtained the preimage map, but since direct image only pokes pointwise into the domain, it takes strong
conditions such as connectedness or compactness to even make sense of global data via pushforward.

Neighborhoods and Points

Definition 2.12. Let X be a topological space, S C X.

A neighborhood of S is a subset V of X containing an open set U containing S:
SCcucvckX

In particular, we are usually interested in the case when S is just a single point.

Consider a subset S of a topological space X.

* A point x is an interior point of S if S is a neighborhood of x. The set of all interior points of S is
called the interior of S and is denoted S°.

* A point x is a boundary point of S if all neighborhoods of x contain at least one pointin S and

one point notin S. The set of all boundary points of S is called the boundary of S and is denoted
0S.

* A point x is a limit point of S if all neighborhoods of x contain at least one point of S different
from x itself. Note that a limit point of S does not have to be an element of S. The union of S with
the set of all limit points of S is called the (topological) closure of S and is denoted S.

Theorem 2.x3. Let S be a subset of a topological space X.
Then S is open if and only if S = S°, and S is closed if and only if S = S.

Proof. Suppose S is open. Clearly we always have S° C S, so it remains to show S C S§°. Letx € S. Since
S is open, S is a neighborhood of x:
xeSCSCX

Sox € S°. Conversely, suppose S C S°. Then every point of S is an interior point, that is, for every point
x € S there exists an open set U, such thatx € Uy C S. Then UxeS U, = S, and since S is a union of
open sets, S must itself be open.
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Now suppose S is closed. Clearly we always have S C S, so it remains to show S C S. Letx € S. Then
either x € S or x is a limit point of S. Suppose x ¢ S and x is a limit point of S. If S is closed, then S€ is
open. If x € S, then necessarily x € S¢. Note that S is a neighborhood of x by the same trick as before.
However, since X is a limit point of S, we see S¢ must contain a point of S (distinct from x), contradiction.
So we must have x € S.

Conversely, suppose every limit point of S isitselfin S. Let x € S€. Since x is notin S, X is not a limit point
of S. Thus it is not the case that all neighborhoods of x contain at least one point of S different from x
itself. Thus there exists a neighborhood of x that does not contain any points of S, which amounts to there
being an open set U such that x € U and such that U is contained within S€. Thus S is a neighborhood
of x, which means every point in S€ is an interior point, which means S€ is open, hence S is closed. [

Theorem 2.14. Let X be a topological space, S C X.

1. Suppose S' C S. Then (S')° C S°.

2. Suppose S € S". Then'S C S”.

3. S°isthe largest subset of S that is open in X.

4 S isthe smallest set containing S that is closed in X.
Proof.

. Let x € (S')°. Then x is an interior point of S, i.e. there is some Uy open in X such that
x € U, € S'.ButS’ C S, so we also have x € U, C S. Hence x is an interior point of S, i.e.
x € S°.

2. Letx € S. Then x is a limit point of S. Suppose V is a neighborhood of x. Since X is a limit point,
thereissomey € VN Ssuch thaty # x. But S C §”,s0y € VN §” and still y # x. Hence x is
alimit point of $”,i.e. x € S”.

3. Let S"be openin X with §" C S. Then S’ = (S')° C S°.

4. Let S” be closed in X with S € S”. Then S C S” = S”.

Moore-Smith Convergence

Definition 2.15. Directed set.

Products of Compacts are Compact

One form of the Axiom of Choice is that a Cartesian product of nonempty sets is itself nonempty. Sur-
prisingly, this fact is equivalent to something much stronger: a Cartesian product of compact topological
spaces given the product topology is itself compact. This is due to how coarse the product topology is.
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Three Separation Axioms

Definition 2.16. Let (X, T) be a topological space. We say (X, T) is...

e Toifforany a,b € X with a # b there exists U € T such that

(aelU) # (bel).
® T] if
peX < pierT
* T, or Hausdorff if forany a,b € X with a # b there are A, B € 2% such that

acA° ANbeB® < ANB=g.

Summarizing:

points in Ty spaces can be distinguised via open sets;
points in Ty spaces are closed;
points in T, spaces may be separated by neighborhoods.

Theorem 2.x7. Every Hausdorff space is Ty. Every Ty space is To.

Proof. Let X be Hausdorft with x € X. Supposey € X\ x. Theny # x, so by Hausdorft there exist
A, B € 2Xsuch thatx € A°,y € B°, A N B = &. Now observe that

YyeB CBCX\ACX\A®CX\x,

so every point in X \ X is an interior point, i.e. X \ X € T,s0x € T¢. Hence, all points of X are closed, i.e.
Xis T] .

Now let X be Ty with x,y € Xsuch thatx # y. Let U = X \ x. Then U € Tvia Ty. At the same time,
x ¢ Uandy € U, which implies

xeUVyeUWAxgUVy¢U)
ie. (x € U) # (y € U), hence X is Ty. O
Now for some examples to complete the picture:

* Let (X, T) be R with the cofinite topology, wherein U € T exactly when X \ U is finite.

Since X \ x € Tforany x € X by definition, we have x € T¢ forany x € X, i.e. Xis Ty. Pick x,y € X with
X # Y, and suppose there were A, B € 2X such thatx € A°, y € B°. Note that A° € Tand B° € 1,50
X\ A°and X\ B° are both finite, i.e. (X\ A°) U (X\ B°) is also finite (finite unions of finite sets are finite),
hence X'\ (A° N B°) is also finite by de Morgan’s laws. But R is uncountable, which means A° N B® is also
uncountable, in particular A° N B is nonempty. And since A° N B® C A N B, it follows that A N B is also
nonempty. This implies that given any open neighborhood A of x and any open neighborhood B of y, we
always have A N B # &. Hence, X is not Hausdorff.
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* Let (X, T) be the Sierpinski space, i.e. (X, T) = ({0, 1},{2,{1},{0, T}}).

Note that {1} is an open set such that 0 ¢ {1} but 1 € {1}, which implies (0 € {1} A1 € {1}) V (0 ¢
{IIAT ¢ {1}),ie (0 € {1}) # (1 € {1}), s0o Xis Tp. But by defininition, the closed sets of X are &, {0},
and X, i.e. the point 1 is not closed, so X is not Tj.

Theorem 2.18. A compact subset of a Hausdorff space is closed.

Proof. Let X be Hausdorft with K C X compact. Take x € X'\ K. Then by Hausdorffness of X, for each
y there exist disjoint open subsets U, and Vj; such thatx € U, andy € V,,. The V,, form an open cover
of K, so by compactness of K we may reduce this to a finite subcover (V;)icr where F C K finite. Let

u=Ju,.

yeF

Then U is an open neighborhood of x disjoint from K. This implies that x is actually an interior point.
Since an arbitrary point of X \ K is interior, it follows that X \ Kis open. Hence, K is closed. O

Theorem 2.19. A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

Proof. Let X be compact, Y be Hausdorff, f : X — Y a continuous bijection with inverse g : Y — X.
Let K € X be closed. A closed subset of a compact space is itself compact. Thus K is compact, so
f.(K) = g*(K) is compact. A compact subset of a Hausdorfl space is closed, so g*(K) is closed. This
shows that the preimage of any arbitrary closed set K is also closed, so g is continuous. Hence, f has
continuous inverse and is thus a homeomorphism. O
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2.2 Distance

One thing you might pick up on from reading the last section is that, in principle, topology could have
developed without the real numbers. However, that is not how the theory progressed. Rather, since
mathematicians were aware of R while topologies were first specified, most of the theory is concentrated
on how to leverage R to better understand topological spaces.

The category of metric spaces, Met, is the canonical example. Here, the lever is distance.

Definition 2.20. Let X be a set. A distance on X is a function
d:XxX—=R

satisfying the following properties:
. d(x,y) > Owithd(x,y) = 0iffx =y
2. d(x,y) = d(y,x)
3. d(x,z) < d(x,y) +d(y,2)

we call the ordered pair (X, d) a metric space.

One exception: when we do construct R, our distance functions will be Q —valued (to avoid circularity).

[add illustration: open ball, closed ball, sphere in the plane.]

Definition 2.2x. Let (X, d) be a metric space. For x € Xand r > 0, define:
* The open ball centered at x of radius: ~ B(x, 1) ={p € X: d(x,p) <1}
* The closed ball centered at x of radiusT:  B(x, 1) ={p € X : d(x,p) < 1}
* The sphere centered at x of radius 1: S(x,1)={p e X:d(x,p) =71}

A mildly amusing phenomenon is that the closed ball isn’t always properly contained within the closure
of its corresponding open ball (though the opposite containment does always hold):

Theorem 2.22. In general metric spaces we do not necessarily have B(x, 1) = B(x, 7).

Proof. Take X ={0} C Rwith d(x,y) =[x —yl. Then B(0,0) = {0} but B(0,0) =& = @. H
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Theorem 2.23. Metric spaces form topological spaces.

Proof. Let (X, d) be a metric space. Now define an open set in X to be an arbitrary union of open balls:
Uet = UIUB(Xurt)
eJ

We now check the axioms for a topological space.

* We have
o=[JBx0 ad X=[]JBx1)

xeX xeX

o Arbitrary unions of arbitrary unions of open balls form arbitrary unions of open balls:

U U B(XL,T‘L) = UB(XL,TL)

AEA LE] veJJu

xEA

* Finite intersections of arbitrary unions of open balls form arbitrary unions of open balls:

This is slightly trickier, but still doable. For shorthand, write B, = B(x,, 1,). We note that the
intersection of two open balls By and B; can be written as an arbitrary union of open balls:

B1NB, = U B ((p, min({ry — d(x1,p), 72 — d(x2,p)}))

pEB1NB,

Thus, the intersection of Ux = | J xca Baand Uy = ULe ] B, can be written as follows:

e () (Ye) -y (o (ue))

=JU®«nB)= |J (BanB)

aEA €] (o) EAX]

U U P, mln {T(X d(xomp)) T — d(xt)p)}))

(L) EAX] pEBLNB,

= J B (pymin({ra — d(xe )1 — d(x, p)})) -

p € B«nB

(et)EAX]

This completes the verification of the topological space axioms. O

The topology T generated by these arbitrary unions of open balls is called the metric topology.
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Theorem 2.2.4. Metric spaces are Hausdorf.

Proof. Let (X, d) be a metric space, X,y € X such thatx # y,and letT = d(x,y). Then
B(x,r/3)NB(y,r/3) =@

which shows that any pair of distinct points can be separated by neighborhoods. O]

Continuous Functions

Since we have a distance function while working in Met, there are actually two competing definitions
for what it means to be a continuous function: there is the e—0 characterization, and then there is also
openness of open preimages. In Top generally, these definitions need not coincide.

We now show that these two things are exactly the same in Met.

Theorem 2.25. Let (X, dx) and (Y, dy) be metric spaces with topologies Tx and Ty, f : X — Y. Then
Vx € XVe>030>0Wx €X, dx,x") <& < d(f(x),f(x)) <e (e-9)
exactly when
VZ €2V ((Z € ty) < (f(Z) € X)) (PRE)
Proof. (PRE) < (e-0): Suppose (PRE). Let x € X, ¢ > 0, W = B(f(x),¢). Since W € Ty,
*(W) € Txby( RE). So f*(W) = f*(W)°,ie. B(x, 1) C f*(B(f(x), €)). Pick d = 1. Let x’ € X.
d(x,x") < & <x’' € B(x,6)
<x’ e f(B(f(x),¢

)
< f(x') € B(f(x), ¢)
< d(f(x), f(x)) <e.

)

Hence, (e-9).

(e-8) < (PRE): Suppose (¢-5), and let W € ty. Then W = |J,¢; B(y,, 1), s0

=Jr By,

eJ

[add an illustration here eventually]

Leta € f*(B(y, 1)), e =7, — d(f(a),y.). Then there exists d such that
B(a,8) € (B(f(a),e)) € f*(B(y,m)).
But a was arbitrary, so f*(B(y,, 1)) € Tx, and by closure of open sets with respect to arbitrary unions,
" (W) € 1x.

Hence, (PRE). O
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Uniform and Lipschitz Continuity
Definition 2.26 (Uniform Continuity). Let (X, dx) and (Y, dy) be metric spaces and let f : X — Y.

We recall that f is pozntwise continuous (or simply continuous) if

vxeX Ve>0 I8>0 W' eX dx(x,x") <& < dy(f(x),f(x")) <.

We say that f is uniformly continuous if

Ve>0 3F8>0 ¥xeX W eX dx(x,x') <& < dy(f(x),f(x") < e.

Definition 2.277 (Lipschitz Continuity). Let (X, dx) and (Y, dy) be metric spacesand let f : X — Y.
If there is some ¢ > O such that

vx,x" € X dy(f(x), f(x") < cdx(x,x’)
then we say that f is c—Lipschitz. The constant ¢ is known as the Lipschitz constant of f.

Theorem 2.28. Every Lipschitz function is uniformly continuous.

Proof. Pickd = ¢/c.

Example: Distance from a Set

Definition 2.29. Let (X, d) be a metric space and let Z C X.

d(x,Z) =inf d(x, z).

zeZ

Theorem 2.30. Distance from a set is 1-Lipschitz.

Proof-

The Lebesgue Covering Lemma

Definition 2.31. Let (X, d) be a metric space, and let O = {U, },¢j be an open cover of X.
A Lebesgue number is a number > 0 such that:

every subset of X having diameter less than & is contained in some U, € O.

Theorem 2.32 (Lebesgue Covering Lemma).

Let (X, d) be a compact metric space and let O = {U }\cj be an open cover of X.

Then O admits a Lebesgue number.
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Proof. Since X is compact, we may reduce to some finite subcover Ofip.

Letx € X. Thenx € U° = U forsome U € O, Since OU is compact (closed subset of U bounded by
X),
min d(x,p)

peol
is well-defined (by compactness) and positive (since x € U°). Note, however, that there could be multiple
U; € Oy containing X, so

max min d(x
U;5x pedll (x,p)

is also well-defined (since the max is over a finite set) and positive (max of positive set). But X is compact,
$O
M = min max min d(x,p)
xeX Uidx peol
is also well-defined (by compactness of X) and positive (min of positive set). Let & = m/2.

Now suppose z € Z C X wherediam Z = inf, ;/c7 d(z,2") < 8. Thenforz’ € Z,

1
/ < . — _ . .
d(z,z') < diam Z < 6 min uml%;;grelé% d(x,p)
1

2
1

IN

max min d(z,p)
U; 3z peall P

=5, oin d(z,p)

for some Upax € Ofin. Since everything defined in sight has been continuous, Uay doesn’t jump around
(though it may be nonunique). The above inequality asserts that any point z" away from z doesn’t venture
outside the boundary of some U,y Hence Z C Uy, which completes the proof. O

Continuity on Compacts is Uniform
Pointwise continuity is a local property of f, whereas uniform continuity is a global property of f.

Theorem 2.33 (Heine-Cantor). Let X and Y be metric spaces with £ : X — Y a continunous function.

Suppose X is compact. Then f is uniformly continuous.

Proof. Lete > 0. Then €/2 > 0 as well, so for every x € X there exists some 8y /> such that
fo(B(x, 8xe/2)) € B(f(x),€/2).

Observe that
Os = {B (X> 67(,5/2) X € X}

forms an open cover of X. Since X is compact, O, admits a Lebesgue number A. Pick & = A/2.
Suppose Xo, X1 € X with d(x¢,%1) < 8. Then B(xo, 8) has diameter A, so

B(XO) 6) g B(X) 6x,5/2)
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for some x € X, i.e. B(xg, 0) is contained within some element of O,. But then
f*(B(Xm 6)) g f*(B(X) 6><,£/2) g B(f(X), 5/2)
so f(xo) and f(x) are both contained within the ball B(f(x), ¢ /2). But this ball has diameter ¢, which
implies
d(f(xo), f(x1)) < e.

Hence pointwise continuity of f on X compact implies uniform continuity of f. ]

2.3 Completeness

Completions: Unique up to Isometry

Theorem 2.34. If a metric space completion exists, it is unique up to isometry.

Proof. Let X be a metric space and let X*, X** be completions of X.

Every x* € X* has a Cauchy sequence (xy,)n, C Xsuch that x, — x* by completeness of X*. But by
completeness of X**, we have x, — x™ for some x** € X**. Note thatif y, — x* theny, —xn — 0,
hence yn, — x**; thatis, the map f : X* — X** given by f(x*) = x™* is well defined. Note that f(x) = x
forallx € X.

Now suppose X, — X*, Yn — Y™ in X* and also x,, = x™, Yy — y** in X**. Then

d.(x*,y*) = lim d.(xn,yn)

n—oo

= lim d(xm yn)

n—oo

= lim d**(xn,yn) = d**(f(X*)yf(y*)))

n—oo

so f is an isometry. L]

This result can actually be strengthened to “unique up to unique isometry,” though we won’t do this.

Completions: Existence

Note: this proof depends on the existence and completeness of the real numbers R, a fact that we prove in
the next section. Since we give that proof in full detail, we move somewhat briskly through the general
case.

The proof is adapted from an argument given in Kolmogorov and Fomin.
Theorem 2.35. Let (X, d) be a metric space. Then a completion of X exists.

Proof. Declare two Cauchy sequences (X )n and (Yn )n in X to be equivalent it

lim d(xn,yn) =0,
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and denote the set of equivalence classes by X*. Define the distance between two points x*, y* € X* via
d.(x*,y") = Ii]11n d(Xny, Yn)

where (Xy,)n is any representative of X* and (Yn ) is any representative of y*. This map is well-defined
(i.e. does not depend on the choice of equivalence class representative) and is in fact a distance.

Forx € X, associate in X* the equivalance class x* of Cauchy sequences converging to x (for example,
an easy to write down representative of this class would be (x, x, X, ... )), so that when x € X, we also
have x* € X via some nice representative, i.c. so that it makes sense to speak of d (limy, Xy, lim, Y, ) in
the special case where (X, ) and (Yn ) are constant sequences in X.

Recall that metrics respect convergence of sequences, i.c.
d (nm Xy limyn> — lim d(xn, Yn)-
n n n

But by definition,
lion d(xp, Yn) = d. (", y")

ie. themap (-)* : (X,d) — (X¥, d,) given by x — x* is an isometry! We now proceed as if X C X*.
Now let x* € X*and € > 0. Let N € N be such that for N < n, m we have d(x,,, X;,) < €. Then

d(xn, x*) = lim d(xp, Xm) < €

so X = X*; that is, X is dense in X*.
By the above density result, given a Cauchy sequence (X}, )n C X* there always exists a sequence (X )n C X

equivalent to (X}, )n (simply pick x,, to be within 1/n of x};). Since x,, — x* € X*, we have x}; — x* €
X* as well via equivalence of the two sequences, i.e. X* is complete. O

The Banach Fixed-Point Theorem

Definition 2.36. Let (X, d) be a metric space, f : X — X.

We say f forms a contraction mapping if there is some & € [0, 1) such that
d(f(x), f(y)) < ad(x,y)

forallx,y € X.

Theorem 2.37 (Banach fixed-point theorem). Lez (X, d) be a nonempty complete metric space with a
contraction mapping f : X — X. Then f admits a unique fixed point x* € X so that f(x*) = x*.

Proof. Letxo € X and define

(Xn)n = (XO>A(XO)> AZ(X0)> co )
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where A™(x) = A™ (A (x)). Forn < m,

d(xnvxm) = o‘nd(xmxmfn) < ot (d(XO)X1) ++ d(Xm,n,],Xm,n)) <

ie. (xn)n is Cauchy. By completeness of (X, d) we may write
Xn — Xoo
and by Lipschitz continuity of A (see below), Xoo = A(Xoo). This proves existence of a fixed point Xq.
To show uniqueness, note that
(Alxoo) =AYso)) < (A(XooyYoo) < @ d(Xooy Yoo))

and since 0 < o« < 1, we must have Xoo = Yoo- O

2.4 The Continuum

Theorem 2.38 (Construction of R). A4 completion of Q exists.

Proof. LetR = k(Q)/mo.

From previous work we know that R is an archimedean ordered field, which means that Q C R. We need
to show that the completion of Q is R and that R is a complete metric space.

For elements &« = (an)n, P = (bn)n of K(Q), define
dr ([ed, [B]) = [(dq(@n, bn))nl.
By a previous proposition,
|dq (am, bm) — dq(an, byl < dg(am, an) + dq (bm, bn),
i.e. the sequence of distances is Cauchy because ot and 3 are.

We claim that
(o~ B) = (dr(lad, [B]) = Or).

Indeed, « ~ {3 if and only if for every ¢ € Q7 there is some N, € Z* such that foralln > N,
dq(an,bn) < €. But

(dQ(an)bn) < E) = (dQ(dQ(an)bn))O) < 5)
so the condition is equivalent to dg ([ed, [3]) = Og.

Another claim: the distance doesn’t depend on equivalence class representative. This is easily shown if we
know that dg satisfies the triangle inequality, because then, if @ ~ «’ and 3 ~ 3/, we have

dr([od, [B]) < dr([od, [&T) 4+ dr([&], [B]) + dr ([B'], [B]) = dr([x], [B])



20 CHAPTER 2. THE TOPOLOGICAL PERSPECTIVE

dr ([e], [B]) < dr([ed, [ot]) + dr([ed, [B]) + dr([B'], [B]) = dr([e], [B])
showing that dg ([«], [B]) = dr (['], [3']).

Letot = (an)n, B = (bn)n, Y = (cn)n bein k(Q). Verifying the triangle inequality comes down to
showing that

[(dQ(aTn bn))n] S [(dQ(an) Cn) + dQ(Cm bn))n]
Suppose equality does not hold. Then there exists an € € Q" such that forall N € N*™ there is some
ng > N such that

dQ(dQ(anoa Cno) + dQ(Cno» bno)a dQ(anoa bno)) 2 €
We may use the N indices to build subsequences such that there is some ¢ € Q", M € Z" such that for
alm > M,
dq (am, b)) < dg(am,cm) + do(cm, bm) + ¢.

So the triangle inequality holds, which implies that the distance is well-defined.

Since dg is built from dgq, it is both symmetric and nonnegative. We just checked the triangle inequality,
and the fact that distance zero implies points are equal is a consequence of how we defined the quotient
space R(I"). So dg is a metric, which makes (R, dg ) a metric space.

Since real numbers are equivalence classes of Cauchy sequences, any open neighborhood of [x] € R will
contain the tail of every sequence (a, )n € [o, i.e. every open neighorhood of every point in R contains
at least one rational. So Q is dense in R..

We now show that (R, dgr ) is complete.

Let = = (&,)n where &, = [(X(m,n))m] be a Cauchy sequence of real numbers. Then forevery e € Q"
there is some N, € N such that for all n,n’ > N, there is some M, ,» € N such that for all
m > M,

dQ(X(m‘n), X(m,n’)) < €.
Further, each &, is Cauchy, so foreveryn € N*" and ¢ € Q™ there is some M,, . € N** such that for
m, m’ > M, ,, we have

dQ (X(m,n)) X(m’,n)) < €.
Since we have equivalence classes, we may work with convenient (i.e. rapidly converging) representatives
from each class. That is, we may assume that for all m, m’,n € Z*, we have

dQ(X(m,nb X(m/,n)) < 2- min({m,m’})_
Lete € Q*, and pick N = max({N/2, [1 —log,(€)]}). so that
27N < 27 (o)) — ¢ /2

Then

dq (X(nm) X)) < do(Xmn)s Xnn) + dQ(Xnm)y Xnrnn) < €/24+¢/2=¢
so £, € R. Further,

dQ(X(m,an(n,n)) S dQ(X(m,n),X(m,m)) + dQ(X(m,m)) X(n,n)) < E/Z + é’:/2 =g,
s0 &n — & This shows that R is complete, which ends the proof. O
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Forms of Completeness

Archimedean Property: Let &, 3 € R. Then 3N € N such that &« < Nf3.
Cauchy Completeness: Let (x;); C R. If (x;); is Cauchy, then X; — X for some Xo, € R.

inf/sup Completeness: Let S C R be nonempty.
If S is bounded above, then sup S exists. If S is bounded below, then inf S exists.

Interval Refinement Property: Let ([x; — €i, X; + €i]); be a sequence of closed intervals such
that
[XQ — €0,Xp + 60] D) [X] —€1,X1 + 61] D) [Xz — €2,X2 + €2] Do

with €; — 0. Then the intersection (), [x; — €1, X; + €] is nonempty.

Monotone Convergence Theorem: Let (x;); C R. If (x;); is either strictly increasing and
bounded above or strictly decreasing and bounded below, then x; — X for some X5, € R.

Bolzano-Weierstrass Theorem: Let (x;); C R.If (x;); is bounded, then 3(x4(i))i € (%i)i such
that Xq(i) — Xoo for some X, € R.

Intermediate Value Theorem: Let a,b € R with a < bandlet f : [a, b] — R be continuous.
If f(a) < 0 < f(b), then f(¢) = O forsomec € (a,b).

Theorem 2.39. Suppose o holds. Then 1 through 6 are logically equivalent.

Proof: We'llldo1 <2 <3 <Tlandthen2 <4 <5<6<2

1<2

Suppose S C R is nonempty and bounded above. Let sy € S and let M be an upper bound of
S. Construct (s;); and (M;); as follows: if SiJrzMi is an upper bound of S, set (si11, Miy1) =
(si, %) Otherwise there is some x € S such that x > 514”2&
(si+1, Mit1) = (x, My). The sequence (so, Mo, s1, My, 52, My, ... ) is Cauchy, since [s;11 —
M| < %|Si — M. Let « be the limit of this sequence. Then M; — o« and s; — o. So
is an upper bound of S, for if there were some o’ such that « < o’ < M foralli € N, then
o’ — ¢ would be an € such that @ — M| > € foralli € N, which cannot happen since M; — «.
Furthermore, since s; — «, for every € > 0 there is some i € N such that  — s; < €, which is

precisely the supremum condition.

, and in this case we set

Suppose we have a sequence of nested closed intervals ([x; — €3, X; + €]); with €; — 0. The set
S = (x{ — €i)iis nonempty and bounded above by x; + €; foralli € N, and thus has a supremum.
Let o« = sup S. Then since « is an upper bound of S, x; — €; < foralli € N. Butsince « is
the least upper bound, any upper bound will be at least «, in particular & < x; + €; foralli € N.
Combining these two facts, we see that « € [x; — €;,%; + €] foralli € N, i.e. the intersection
(:[xi — €1, xi + €] contains ot and is thus nonempty.
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Suppose (x;); C Ris Cauchy. Let a; = min{x; : i < j}, by = max{x; : 1 < j}. Then for every
€ > 0 thereis some N € N such that foralli > N we have b; — a; < €. In particular for every
i € N thereis some 0(i) € N such that by — ag) < 2. We then have

[ao(0), o)) D [ao(1), b)) D [ao(2), bo)) D -+

with bg(i) — gy — 0, so the intersection () [ao(i), bo(i)] is nonempty. Pick Xo0 € ();[Ao(i), boiy]-
Now, Ag(i) < Xoo < bgi) foralli € N, so

0 < Xeo — Ao(i) < b(;(i) — Qg(i) and Qi) — bgm < Xeoo — bgm <0

for alli € N. By the squeeze theorem, we have both a; — X, and b; — X. At least one of
{(as(i))iy (bo(i))} attains infinitely many distinct values, let’s say (agi)); does this. Construct the
sequence (C;); to be (aq(i))i without repeats. This is a subsequence of both (ai)); and (x;)i. But
Qo(i) — Xoo» SO Ci — Xoo, hence X — Xoo.

Let (x{); C R be strictly increasing and bounded above. Then & = sup, x; exists. Let € > 0.
Then there is some x; such that & < xj + € forallj > 1, hence |ox — x;| < € forallj > 1, showing
Xi — X.

j

Suppose (x;)i C R is bounded. Take the subsequence (Xq(i))i = (min{x; : j < i});. This
sequence is strictly decreasing and bounded below, so it converges to some X .

Let f : [a, b] — R be continuous. Take the sequence (x;); that goes

a+b 3a+Db a—+ 3b 7a+Db 5a+ 3b

a) b) 2 ) 4 ) 4 ) 8 ) 8 )

this sequence is dense in [a, b]. Since continuous functions map dense subsets to dense subsets,
f.([a,b]) N [f(a), f(b)] forms a dense subset of [f(a), f(b)]. Construct the infinite array of
subsequences by stipulating that row n of the array consists of the subsequence of (x;); for which
f(xi) € [f(a)/n,f(b)/n] for all terms in the n — Tth row (take row O to be (x;);). By density,
the rows of this infinite array are nonempty, in fact each row has infinitely many entries. Since the
terms of the infinite array are bounded, it follows that the leftmost column of the array is bounded.
Thus the leftmost column has a convergent subsequence. By sequential continuity of f, the image
of this convergent subsequence is itself a convergent sequence. Due to how the infinite array of
subsequences was constructed, though, the image of the limit of the convergent subsequence has
no choice but to be 0. So the limit of the leftmost column sequence is a ¢ such that f(c) = 0.

Let S C R be nonempty and bounded above and suppose that sup S does not exist. Let T be the
set of all upper bounds of S, and define f : R — R to take the values =T on R\ Tand TonT.
Then f is continuous, but for all x € R, we have f # 0, thereby falsifying the intermediate value
theorem. So by contraposition, sup S must exist.

Hence, 1 through 6 are logically equivalent given O. ]



