
Chapter 1

Some Logic and Set Theory

This chapter will develop:

• fluency with the logic of propositions (order zero) and predicates (order one),

• familiarity with the axioms of Zermelo-Fraenkel set theory with Choice,

• a working understanding of relations, functions, and numbers.

It sets the foundation for the sequel, which begins with an introduction to general topology.

For §1.1 on propositional logic:

The organizing theme will be to view logical objects as functions defined with respect to a two element set of
truth values

V = {⊥,⊤}

the truth values themselves are “nullary truth functions,” the identity and negation operators “unary truth func-
tions,” and the classical logical connectives “binary truth functions.”

This departs from the usual presentation, wherein truth values are assumed intuitive enough to be introduced
without any context, identity is ignored altogether, and negation is lumped in with the connectives even though it
has a fundamentally different character.

Functions are so important to mathematics, though, that this departure is warranted.

We dissect the distinction between a necessary and sufficient condition, a topic often unclear even to native English
speakers. We give examples of logical deduction from a historic trio of axioms (plus a law of inference, modus
ponens), such as deducing transitivity of implication. We show that under each set of logical connectives, there
exists a structure that echoes throughout the rest of the book: the bounded lattice.

For §1.2 on predicate logic:

Probably the most important feature of this chapter is the featuring of Cauchy’s ε–δ definition of the limit of
a function, which motivates introducing variables, predicates, and quantifiers. We also cover the principle of
mathematical induction and the related idea of well-ordering.
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For §1.3 on Zermelo-Fraenkel with Choice:

Rather than treating the list as a set of commandments to memorize, we focus on what each axiom affords us. The
Axiom of Choice is discussed in terms of three major schools of mathematical philosophy, with the Banach-Tarski
phenomenon used as an illustrative example.

For §1.4 on Relation and Number:

Having touched on general binary relations in the previous section, we begin herewith a focus on the homogeneous
case, out of which springs preorderings, partial orderings (antisymmetric preorderings), and total orderings (partial
orderings where everything is comparable). This perspective is worthwhile, e.g. since the real numbersR form a
totally ordered lattice, withR forming a bounded totally ordered complete lattice.

We cover functions in terms of their characterization as left-total and right-unique relations. This sets up in-
vertibility as further satisfying right-totality and left-uniqueness, thus expressing set isomorphisms as exactly
the bidirectionally total-and-unique relations. The capstone is a proof of the Schröder-Bernstein theorem via
Knaster-Tarski, thus establishing the theorem as a corollary of a fixed-point result.

We introduce the integers Z and the rational numbersQ first from an algebraic perspective, then from an order-
theoretic perspective. As a fun bonus, we cover negabinary expansions as a natural way to sequence the integers,
then compose with unique factorization to sequence the rationals. This leads nicely into a presentation of Cantor’s
diagonal argument.

For an arbitrary ordered field Γ , we cover the ordered ring of Cauchy sequences κ(Γ). We then provisionally define
R to be κ(Q )/m0, wherem0 denotes the maximal ideal of Cauchy sequences that tend towards zero. In the next
chapter, we prove the completeness ofR via nested Cauchy sequences, which bootstraps the proof of the existence
of arbitrary metric space completions.
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1.1 Propositional Logic

We begin with a definition that will be used thoughout.

Definition 1.1.A function f consists of a rule of assignment

for mapping from a domain X to a codomain Y, such that:

every element of the domain is paired with a unique element of the codomain.

To denote functions we write f : X → Y with x 7→ f(x) denoting the rule of assignment.

Now, since we haven’t even defined sets (i.e. domains and codomains) yet, starting with functions might feel like
getting ahead of ourselves. The compromise is that the functions we work with in this chapter will be defined on
a two element set; this is much smaller and thus easier to understand than, say, the uncountable continuumR,
which needs a fair amount of set theory to even be precisely described.

This two element set is
V = {⊥,⊤}

where⊥ denotes false and⊤ denotes true.

A note on finiteness for the careful:

Observe thatV has two elements,V2 (all 2-tuples with entries inV) has four elements, and in generalVn (n-tuples
with entries inV) has 2n elements. (We definen-tuples formally in §1.3, but theymay also be thought of informally
as n things taken at once in a certain order.) A function going from Vn to V must make 2n binary decisions (i.e.
whether to set each function value to either⊥ or⊤), so there are 22

n

possible functions that could go from Vn to
V . Thus, everything involved is finite.

We will soon work with arbitrary (i.e. potentially infinite) sets, though. Here’s why we did not just start with
infinite sets: intuitively, one thinks of a set as an unordered collection of objects with no repeats. However, this
naive conception can lead to logical disaster.

For instance, we have the following argument, known asRussell’s Paradox:

Consider the set of all sets that are not elements of themselves – call this setΩ.

On the one hand, ifΩ is an element of itself,

then it is (by definition ofΩ) not an element of itself.

On the other hand, ifΩ is not an element of itself,

then it belongs with all the other sets that aren’t elements of themselves – namely, inΩ.

SoΩ contains itself if and only ifΩ does not contain itself – a contradiction.

We would like to exclude sets likeΩ from all of mathematics. The working solution is called ZFC, a collection of
axioms and axiom schemata that specify how sets ought to behave. An exploration of ZFC right now would be a
distraction, though we’ll get to it in a moment.
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Thus, we restrict our attention to finite sets, where our intuition is trustworthy. The natural numbers are essentially
a part of the language layer, as in people know of them regardless of whether they care to learn mathematics. Even
nonhuman animals have been observed to count.

Truth Functions

We now begin our study of propositional logic.

Definition 1.2.A proposition (or statement) is a grammatically correct declarative sentence that can be
assigned exactly one value from V . That is, propositions are true xor false.

We often use the letters P,Q, R, S to denote propositions.

Small detail: truth functions don’t work with propositions directly, but rather with their truth values.

Nullary Truth Functions

The set V0 = {()} consists of exactly one 0-tuple (the only possible 0-tuple).

Thus we have two nullary truth functions:

⊥ : V0 → V via () 7→ ⊥, and ⊤ : V0 → V via () 7→ ⊤.

That is, the nullary truth functions are simply the truth values.

Unary Truth Functions

The set V1 consists of two 1-tuples, corresponding to the two elements of V .

To each 1-tuple there are two choices of output, spawning a total of four unary truth functions.

(1) ⊥(P) := ⊥ (2) ⊤(P) := ⊤ (3) +(P) := P (4) −(P) := −P

We can describe the unary truth functions in tabular form:

P ⊥ ⊤ + −

⊥ ⊥ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤ ⊥

Here are some comments on these functions.

• The functions (1) and (2) are exactly the nullary truth functions from before.
• The function (3) is called the identitymap. In general, an identity map outputs its input unchanged.
• The function (4) is called negation. It is a consequence of the table above that

P = −(−P),

a fact known as double negation.
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Binary Truth Functions

The set V2 consists of four 2-tuples:

(⊥,⊥), (⊥,⊤), (⊤,⊥), (⊤,⊤).

Denoting an element of V2 by (P,Q), sixteen binary truth functions follow.

(1) ⊥(P,Q) := ⊥
(2) ⊤(P,Q) := ⊤
(3) = (P,Q) := (P = Q)

(4) ̸= (P,Q) := (P ̸= Q)

(5) +P(P,Q) := +P

(6) −P(P,Q) := −P

(7) +Q(P,Q) := +Q

(8) −Q(P,Q) := −Q

(9) ≤ (P,Q) := (P ≤ Q)

(10) ≥ (P,Q) := (P ≥ Q)

(11) < (P,Q) := (P < Q)

(12) > (P,Q) := (P > Q)

(13) ∧(P,Q) := (P ∧Q)

(14) ∨(P,Q) := (P ∨Q)

(15) ↑ (P,Q) := (P ↑ Q)

(16) ↓ (P,Q) := (P ↓ Q)

Note that while we use prefix notation to define these truth functions, in practice one uses infix notation.

We give their descriptions all at once:

P Q ⊥ ⊤ P = Q P ̸= Q +P −P +Q −Q

⊥ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤
⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊤ ⊥
⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤
⊤ ⊤ ⊥ ⊤ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥

P Q P ≤ Q P ≥ Q P < Q P > Q P ∧Q P ∨Q P ↑ Q P ↓ Q

⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥ ⊤ ⊤
⊥ ⊤ ⊤ ⊥ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥
⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊤ ⊥
⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥

Here are some comments on these functions.

• The functions (1) and (2) are exactly the nullary truth functions from before.
• Functions (3) biconditional and (4) exclusive disjunction have to do with whether the inputs agree:

(P ̸= Q) = −(P = Q)

• Functions (5 - 8) are constructed by restricting to a single input and then applying a unary truth function.
• Functions (9) implication, (10) reverse implication, (11) negated reverse implication, and (12) negated implication
are all asymmetric and transitive binary truth functions.

• Functions (13) conjunction aka “and” and (14) inclusive disjunction aka “or (possibly both)”
satisfy both deMorgan’s laws and the distributive laws:

(−P)∨ (−Q) = −(P ∧Q) (−P)∧ (−Q) = −(P ∨Q)

P ∧ (Q∨ R) = (P ∧Q)∨ (P ∧ R) P ∨ (Q∧ R) = (P ∨Q)∧ (P ∨ R)

• Implication can be written in terms of negation and inclusive disjunction:

(P ≤ Q) = (−P ∨Q)

• Functions (15) negated conjunction aka “nand” and (16) negated inclusive disjunction aka “nor” are interesting
because each individually can generate all the other binary truth functions:

−P = P ↑ P = P ↓ P P ∧Q = −(P ↑ Q) P ∨Q = −(P ↓ Q)

Wewill return to this shortly.
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Conditional Statements

In the proposition P ≤ Q, we call P the antecedent andQ the consequent.

The antecedent suffices for the consequent, whereas the consequent necessitates the antecedent.

Amplifying,

“P is a sufficient condition forQ” holds exactly when “Q is a necessary condition for P.”

Be prepared to recognize the following forms of P ≤ Q:

• “P impliesQ” or “Q is implied by P”

• “if P thenQ” or “Q if P”

• “only ifQ then P” or “P only ifQ”

The conditional P ≤ Q is the converse toQ ≤ P and the contrapositive of−Q ≤ −P.

• The converse of the converse of a conditional is the original conditional.

• The contrapositive of the contrapositive of a conditional is the original conditional.

Logical Deduction

This refers to the process of starting with a set of assumptions and arriving at a conclusion after a finite number of
steps. We care about truth functions and tabular proof because it is a quick way to get to the truth value of any
proposition; we care about logical deduction because it is a microcosm not dissimilar to howmathematics actually
functions.

Three Axioms + One Law of Inference

Formally, a propositional calculus can be thought of as a set of propositions, a set of logical connectives, a set of
axioms, and a set of laws of inference. Here is a common starting point:

⊢ (P ≤ (Q ≤ P))(1)
⊢ ((P ≤ (Q ≤ R)) ≤ ((P ≤ Q) ≤ (P ≤ R)))(2)
⊢ ((−P ≤ −Q) ≤ (Q ≤ P))(3)

P, (P ≤ Q) ⊢ Q(MP)

The first three lines are axiomswhere P,Q, etc. can be any propositions.

The remaining line ismodus ponens, a law of inference. Laws of inference are distinct from conditionals due to
operating one level above where conditionals are defined: see Lewis Carroll’s “What the Tortoise Said to Achilles”
for an illustration of this distinction.
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The ⊢ symbol is called a turnstyle, and any expression involving it should be read as

“given what is left of the turnstyle, we have what is right of the turnstyle.”

Laws of inference thus employ the turnstyle as a kind of meta-conditional; this is essential for describing logical
consequences which themselves include conditional statements.

Using the Axioms andModus Ponens

The first move is to turn those axioms into inferences via (MP):

P ⊢ (Q ≤ P)(1–i)
(P ≤ (Q ≤ R)) ⊢ ((P ≤ Q) ≤ (P ≤ R))(2–i)

(−P ≤ −Q) ⊢ (Q ≤ P)(3–i)

Another application of (MP) to (3–i) transforms it intomodus tollens:

(MT) (−P ≤ −Q),Q ⊢ P.

Proposition 1.3.
(P ≤ Q), (P ≤ (Q ≤ R)) ⊢ (P ≤ R).

Proof. We start by assuming both P ≤ Q and P ≤ (Q ≤ R). We then may infer that (P ≤ Q) ≤ (P ≤ R) via
(2–i). Finally we get P ≤ R via modus ponens. ■

Proposition 1.4.
(P ≤ Q), (Q ≤ R) ⊢ (P ≤ R).

Proof. Start by assuming both P ≤ Q andQ ≤ R. Then by (1–i), we get P ≤ (Q ≤ R). Finally we get P ≤ R

via Proposition 1.3. ■

Meredith’s Sole Axiom

One of the surprising things about propositional calculus is it only needs one axiom to get off the ground:

(!) (((((A ≤ B) ≤ (−C ≤ −D)) ≤ C) ≤ E) ≤ ((E ≤ A) ≤ (D ≤ A)))

This is known asMeredith’s sole axiom, and from it one can derive the axioms given above.
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Methods of Proof

There are roughly three ways one can approach a proof. We will use as our working example the fact that every
integer is either even or odd. We can structure this in conditional form as follows:

n is an integer≤ n is either even or odd.

The simplest (but often not easiest) way to proveQ given P is to show P ≤ Q and then use modus ponens:

If n is an integer, we may apply division with remainder, which states that for integers a and b there
exists a unique integer quotient q and remainder r such that a = bq+ r and 0 ≤ r < b. The only
two possiblilities for r in this case are 0 and 1; hence, n is either even or odd.

This is called direct proof.

Another way to proveQ given P is to show−Q ≤ −P and then apply modus tollens:

Suppose n is neither even nor odd. Then n+ 1 is neither even nor odd, so n(n+ 1) is not necessarily
divisible by 2. Since for every integerm we must have 2 | m(m+ 1),n is not necessarily an integer, i.e.
it is not the case that nmust be an integer.

This is known as proof by contrapositive.

A third way to proveQ given P is to show that if one had P but also−Q, then disaster ensues:

Supposen is neither even nor odd. Then neithern norn+1 is divisible by 2, son(n+1) is not divisible
by 2. This contradicts the fact that every product of consecutive integers is divisible by 2.

If nm is a product of consecutive integers, then nm is divisible by 2?

Indeed: suppose nm is a product of consecutive integers not divisible by 2. Then nm is odd, and this
entails n andm are odd. But then odd numbers are at least two apart, contradicting our assumption
that n andm were consecutive.

This is called proof by contradiction.

We will encounter all three methods of proof throughout our study of math.
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Use of the≤ Symbol

Readers with previous logic experience may be wondering whatever happened to the→ or =⇒ symbol.

We now take a moment to explain.

Definition 1.5.A bounded lattice is a 6-tuple (X, ∧, ∨, ⊤, ⊥, ≤)

where X is a set,∨ (the join or supremum) and∧ (themeet or infimum)

are functions from X2 to X, and⊤ and⊥ are special elements of X.

These objects satisfy the following conditions:

x∧ (y∧ z) = (x∧ y)∧ z and x∨ (y∨ z) = (x∨ y)∨ z

x∧ y = y∧ x and x∨ y = y∨ x

x∧ (x∨ y) = x and x∨ (x∧ y) = x.

x∧⊤ = x and x∨⊥ = x.

We may further define x ≤ y to mean x = x∧ y (or equivalently y = x∨ y).

A bounded lattice with a notion of complement−x is called a boolean lattice.

The logic we are introducing can be understood in terms of boolean lattices.

This is why we use X ≤ Y instead of the more traditional X → Y.

We note that V as a lattice admits a satisfying visualization. Consider the number lineR, and add two endpoints,
−∞ placed to the left of all negative reals and+∞ placed to the right of all positive reals:

0−1 1 10−10 +∞−∞

the result isR, the extended real number line. We may thus think of

• +∞ as a⊤ and−∞ as a⊥,

• ∧ as taking the minimum of two extended reals,∨ as taking the maximum,

• and negation as rotating the number line 180◦ about 0.

SoR is also a bounded lattice, withV a boolean sublattice. Note, however, that “−” does not logically complement
elements inR. We will say more about lattices in §1.4.
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Lattices of Truth Functions

The n-ary truth functions also form a boolean lattice.

Here is n = 0:

⊤

⊥

Here is n = 1:

⊤

+ −

⊥

Here is n = 2:

⊤

∨

≥ ≤
↑

−P +Q

̸=

=

−Q +P

∧

> <

↓

⊥
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Functional Completeness

We end this section on propositional logic with an application to electronics.

Definition 1.6.A set of binary truth functions is functionally complete if it generates all of the remaining
binary truth functions.

For example, {−, ∧, ∨ } is functionally complete, and by deMorgan’s laws, so is {−, ∧ } and {−, ∨ }.

Now, note that

X ↑ X = −X, (X ↑ Y) ↑ (X ↑ Y) = X∧ Y, (X ↑ X) ↑ (Y ↑ Y) = X∨ Y

so { ↑ } is functionally complete!

Similarly, { ↓ } is functionally complete.

Classical Circuits: nand and nor Gates

Electrical engineers leverage this functional completeness: instead of having to stock and gates and or gates and
not gates, they can work with nand gates exclusively.

Here is the circuit for a nand gate:

This gate is central to electronics design.
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1.2 Predicate Logic

In this section we develop a formal language of quantified statements with variables which will serve as the basis
for defining set theory, itself the foundation for building the remainder of our mathematical apparatus.

Wewill work within a universal collection of logical statements, denotedΩ. The question of howmany elementsΩ
contains is tricky to answer, since our notions of quantity beyond the finite will come from defining sets rigorously.
At the very least, we may distinguish between two variants of infinite, using the criterion of whether the elements
of a given collection can be arranged in a sequence.

Definition 1.7. If X can be sequenced, we will say X is countable and denote X using the notation

X = (xi)i≥0 = (x0, x1, x2, . . . ).

All other infinite Y will be designated uncountable and denoted as follows:

Y = {yι}ι∈J

Here, J is an index set, which can be thought of as some uncountable reference collection.

The usual countably infinite sets are:

N the convex cone of natural numbers (nonnegative integers),

N the convex cone of positive elements ofN,

P the prime elements ofN ,

Z the ordered ring of rational integers,

and Q the ordered field of rational numbers (fractions).

The first three sets are clearly sequences, and we will show how to sequence the last two sets later on.

Some common uncountably infinite sets include:

R the ordered field of real numbers,

(−ε, ε) the open interval of real numbers between−ε and ε,

[−ε, ε] the closed interval of real numbers between−ε and ε,

C the field of complex numbers,

D the open disk of complex numbers of modulus less than 1,

and ∂D the circle of complex numbers of modulus 1.

For now, we will think ofΩ as countable. As we shall see, countability is a fairly tame flavor of infinity.
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Propositions and Infinity

The assumption thatΩ is countable is admittedly a mathematical idealization, since once we define real numbers,
we will be able to generate an uncountable number of propositions, such as

The real number x is rational.

Honestly though, mathematics in practice often requires a certain calm flexibility with notions of the infinite.
For example, we will show that the set of all subsetsP(X) of a setX is always strictly larger thanX, which, ifX is
countable, implies a sequence of sets each infinitely larger than the ones before it,

X, P(X), P(P(X)), P(P(P(X))), . . .

with nothing but philosophical discomfort to keep us from continuing the sequence. What’s more, beyond-
uncountable sets (such asRR, the set of all functions fromR toR) routinely appear in the setting of functional
analysis, which we visit in Chapter 4.

Context and the Symbol Grounding Problem

There’s another philosophical abyss lurking in the background of propositional logic, this one far more insidious
than the problem of producing really big numbers. Every propositionmust be interpreted within a certain context:
for example, the classic proposition

It is raining.

depends heavily on location, time, the number of raindrops coming down (see: sorites paradox), et cetera. But so
far, no one has yet figured out how to define context without falling back on propositions. So the entire
mathematical edifice is, to some degree, floating in midair. Depending on your personal philosophical stance, this
is either irrelevant, devastating, or hilarious.
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Syntax of Predicate Logic

If you’re still reading, welcome to the club. We now specify what we mean by predicate logic.

Terms and Predicates

The words in our formal language are known as terms.

Definition 1.8. By a termwe mean either:

• a constant c, i.e. some fixed object inΩ, or

• a variable x, i.e. a symbol representing any object inΩ, or

• a function f : Ωn → Ω.

We note that constants are nullary functions, and that the argument of a function could be another function. So
we really should writeΩ = Ω0 for the universe of propositions, and thenΩn for all the n-ary functions from
Ω0 toΩ0. Keep in mind that variables can only refer to objects inΩ0 in our formal language.

By an n-ary predicatewe mean a function P : Ωn → V . That is, an n-ary predicate takes in n propositions and
outputs a truth value. Predicates are the building blocks of formulas, which we discuss next.

Formulas andQuantifiers

The sentences in our formal language are known as formulas.

Definition 1.9. By a formulawe mean either:

• an n-ary predicate applied to an n-tuple of terms, or

• a negated formula, or two formulas joined by a binary truth function, or

• ∀xP(x) or ∃xP(x)where x is a variable and P(x) is a formula.

Here are some examples of formulas:

c1, ⊤, P(c1, c2)∧Q, ∀xR(x), ∃xS(x)∨ P(c3, c4)

The symbols ∀ “for all” and ∃ “there exists” are called quantifiers.

Definition 1.10. By a quantiferwe mean one of two symbols:

• the universal quantifier ∀, where the statement ∀xP(x)may be read “P(x) for all x,”

• the existential quantifier ∃, where the statement ∃xP(x)may be read “there exists an xwhere P(x).”

Many logical malapropisms can be attributed to accidentally swapping quantifiers.
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Negating Quantifiers

We record that

−(∀xP(x)) = ∃x(−P)(x) and − (∃yQ(y)) = ∀y(−Q)(y)

The above is basically de Morgan’s laws: think of ∀ as behaving like∧, and ∃ as behaving like∨.

This captures our intuition about what “for all” and “exists” mean in natural language: if something isn’t true for
everything, it is false for at least one thing; similarly, if there is nothing for which something is true, then for all
things that something just be false.

It’s merely terse notation, but these ideas appear so frequently that the brevity is warranted.

Quantifier Case Study: Cauchy’s ε–δ Limit Definition

Here is an example where the quantifiers really matter. It looks forward a bit, but the example is so important that
we preview it here. It is Cauchy’s ε–δ definition of a limit: remember it and it will serve you well.

Definition 1.11. Let f : R → R.

We say that the limit of f as x approaches c is L if

∀ε > 0 ∃δ > 0 such that (|x− c| < δ) ≤ (|f(x)− L| < ε)

and write lim
x→c

f(x) = L.

This can be formalized in terms of games (yes, there is a mathematical theory of games): if Player A gives Player B
an ε0, Player B can then respond with a δ0, and if Player A then sets ε1 = δ0 and then proposes ε1 to Player B,
then Player B produces a corresponding δ1 for Player A, and so on.

TheNon-Logical ∈ Symbol

We need one more symbol, this time having to do with sets.

Definition 1.12.The symbol∈ denotes elementhood, i.e. x ∈ X denotes the proposition

The set x is an element of X.

Elements of sets are always other sets.

The ∈ symbol was orginally an ϵ (lower case Greek epsilon), but eventually became its own glyph.

Thus in our mathematical ontology we shall have two types: propositions and sets.

There is an entire theory of types, but getting into it now would be a distraction.
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Sets: Key Structures

In order to accomodate sets, we won’t be able to use a set as a universe. We need a category.

Definition 1.13.A category C consists of:

• a class of objects C0,

• for any two objects x, y a set of arrows C1(x, y),

• for any three objects a, b, c an associative binary operation

C1(a, b)× C1(b, c) → C1(a, c)

called composition of arrows,

• for any object x an arrow idx ∈ C1(x, x).

Category theory is the more modern way to think about mathematical foundations, but it largely serves the subject
of algebra (in particular: algebraic topology, algebraic geometry, and algebraic number theory). Analysis can be
done without category theory, so we do this in the interest of keeping things as simple as is reasonably achievable.

Still, when the temptation is irresistable, a category-flavored insight may appear down the line.

The Category Set of Sets

Just so that we have a definition on the record, we will say

Set = {x : x = x}

defines the category of sets. This object, when taken alongside the universe of propostionsΩ, may be called the
classical universe of mathematical discourse. Classical here means no categories beyond Set.

This definition is a reference to the three classical laws of thought:

• Excluded middle: every proposition is either true or false.

• Noncontradiction: no proposition is both true and false.

• Identity: every object is equal to itself.

Note that excluded middle and noncontradiction are encoded in our definition of proposition.

The law of identity as used above is formal instead of informal, since we define a rigorous notion of what it means
for two sets to be equal in the next section. It doesn’t formally extend to objects that aren’t sets, since we have no
specification of the= symbol for arbitrary objects.

On a related note, the= symbol being used to denote the biconditional earlier doesn’t formally count as a notion
of “proposition equality” since it merely forms a new proposition from two given propositions. Instead we express
that two propositions P andQ are logically equivalent by first establishing P ⊢ Q and thenQ ⊢ P.

30



The Void

If we can characterize anything with the assumption x = x,

we ought to be able to characterize nothing at all with the assumption x ̸= x.

Definition 1.14.We call
∅ = {x : x ̸= x}

the empty set.

The empty set is sometimes an element of another set, but no set is an element of the empty set:

⊢ (−(x ∈ ∅)).

There is exactly one function on∅, the empty functionwhich sends nothing nowhere.

TheNatural Numbers and SuccessorMap

The binary union
x ∪ y

of two sets x and y consists of all z such that either z ∈ x or z ∈ y. It is a specific case of the arbitrary union,
which we assert to exist in §1.3.

Definition 1.15 (von Neumann).We define the successor of any set X to be

X++ = X ∪ {X}.

In particular, the set consisting of∅ and all sets obtained via applying the successor to∅ a finite number of
times is called the natural numbers. Concretely, the first few natural numbers are denoted

0 = ∅
1 = ∅++ = {0}

2 = (∅++)++ = {0, 1},

3 = ((∅++)++)++ = {0, 1, 2},

4 = (((∅++)++)++)++ = {0, 1, 2, 3}

...

When restricted to the natural numbers, the successor map becomes a unary operation (·)++ : N → N.

A sequence taking values in a set X is a function fromN to X.
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Induction andWell-Ordering

As a consequence of asserting the existence ofN, we have the following schema (one axiom per proposition):

Axiom 1.16 (Induction schema). If P(n) satisfies

P(0) and ∀n ∈ N(P(n) ≤ P(n++)),

then ∀n ∈ N, P(n).

In plain English, this is saying that if one has a property that holds at zero, and one can show that the property
holding at n implies the property holding at n++, then the property holds for every natural number. We may
restructure the axiom so that it is about sets instead of propositions, which is what we really want:

Axiom 1.17 (Set Induction). If a subset X ⊆ N satisfies 0 ∈ X and

(n ∈ X) ≤ (n++ ∈ X)

for all n ∈ N, then X = N.

These are logically equivalent to the following:

Axiom 1.18 (Well-Ordering Principle). Every nonempty subset X ⊂ N has a least element.

Proof. Let X be a subset ofN satisfying 0 ∈ X and

(n ∈ X) ≤ (n++ ∈ X).

Weproceed by contradiction: supposeX ̸= N. Then there is a nonnegative integer not inX, i.e.N\X is nonempty.
ThenN \ X has a least element n. Note that n ̸= 0, since 0 ∈ X. Thus, n > 0, and since n is the least element
not in X, n − 1must be in X. But by assumption, (n − 1)++ = n ∈ X, contradicting our assumption that
n /∈ X. Thus proves that the well-ordering principle implies the principle of induction.

Conversely, consider a nonempty subset Y ⊂ N. If Y has just one element, then that element is the least element
of Y. Now suppose the well ordering principle is true for all subsets ofN with n elements, and suppose Y has
n++ elements. Take y ∈ Y and let z be the least element of Y \ y. Then min({y, z}) is the least element of Y.
This proves that the principle of induction implies the well-ordering princple. ■

Confusingly, there is also aWell-Ordering Theorem, which is a statement equivalent to the Axiom of Choice (i.e.
one may deduce theWell-Ordering Theorem from the Axiom of Choice and also deduce the Axiom of Choice
from theWell-Ordering Theorem). TheWell-Ordering Theorem states that any set admits a well-ordering akin to
the well-ordering given by ∈ onN.

In particular, R can in theory be well-ordered, but the resulting well-order is so pathological that asserting its
existence or non-existence very quickly leads to statements independent of the set axioms!
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Induction Example: Tromino Tiling

A tromino is a 2× 2 square of unit (i.e. 1× 1) squares, with a corner unit square missing:

Proposition 1.19. Every 2n × 2n grid of squares missing one unit square can be tiled with trominos.

Proof. The claim holds for n = 1. So assume the claim holds for n = m− 1.

Divide a 2m × 2m square with a unit square missing into four 2m−1 × 2m−1 quadrants. Place a tromino in the
center so that the missing square of the tromino aligns with the quadrant with the deleted square.

By our inductive hypothesis, each of these quadrants can be tiled with trominos, so the claim holds for n = m.
By induction, the claim then holds for all natural numbers. ■
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Induction Example: A Fibonacci Identity

Though the problem itself is fairly well known, the author initially encountered the solution in Loren C. Larson’s
book Problem Solving Through Problems. There, one can find all the induction practice one will ever need.

Let Fn denote the nth Fibonacci number, defined so that F0 = F1 = 1 and Fn+2 = Fn+1 + Fn.

Proposition 1.20. F2n+1 + F2n = F2n+1.

Remark. A hint that this is going to be trickier than expected is that F2n+3 = F2n+2 + F2n+1, and there is
no logical entry point for F2n+2 based on how the problem is currently stated. The technique is thus to simply
encode F2n+2 into a separate identity, prove that, and then prove the original claim. Watch what happens, though.

Proof. Let’s play around with the identities before proceeding formally.

Following the above, we need to show, given

(1.1) F2m + F2m+1 = F2m+1,

we need to show

(1.2) F2m+1 + F2m+2 = F2m+3 = F2m+1 + F2m+2.

Subtract (1.2) from (1.1) to obtain:

(1.3) F2m+2 = F2m+2 − F2m = F2m+1 + 2FmFm+1.

If we can show (1.1) implies (1.3) via induction, then we would also get that (1.1) implies (1.2) via induction, which
is our claim. But we derived (1.3) from (1.2), and a bit of experimentation confirms that the two indentities are
relentlessly intertwined.

The solution is to stipulate that

P(n) represents the claim F2n + F2n+1 = F2n+1

Q(n) represents the claim 2FnFn+1 + F2n+1 = F2n+2

We already know that (P(m)∧Q(m)) ≤ P(m+ 1). Now note that

2Fm+1Fm+2 + F2m+2 = 2Fm+1(Fm + Fm+1) + F2m+2

= 2F2m+1 + 2FmFm+1 + F2m+2

= 2(F2m+1 − F2m) + 2FmFm+1 + F2m+2

= 2F2m+1 + F2m+1 − F2m

= F2m+1 + F2m+1 + F2m+2 − 2FmFm+1

= F2m+3 + F2m+1 − 2FmFm+1

= F2m+3 + F2m+2 = F2m+4.

This shows that P(m)∧Q(m) ≤ Q(m+ 1). The base cases aren’t hard to verify.

Thus the induction we needed all along was neither P(n) norQ(n) but P(n)∧Q(n), which when proven via
induction (as we essentially just did) gives both P(n) andQ(n) as corollaries. ■

Most instances of induction aren’t this intricate. But some are.
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1.3 The ZFC Axioms

It is now time to define sets properly. Having thoroughly prepared the reader, we deliver the axioms in pure
symbols. The content of this chapter draws heavily from a similar treatment in Set Theory by Thomas Jech.

The theory ZF has six axioms and two axiom schemata:

• Extent

• Pairing

• Power set

• Union

• Induction

• Separation Schema

• Replacement Schema

• Foundation

In addition, we have the Axiom of Choice (C). Collectively, the axioms assert which sets can and cannot exist.

The axioms are the result of hardening the intuitive “collection of elements with no repeats” proto-definition into
a robust specification which most mathematicians at least implicitly rely on.

Equipped with the appropriate definitions, one can prove from the axioms virtually any mathematical result. Of
course, this doesn’t usually happen; in practice one relies on an intuitive understanding of sets gained through
careful study of their properties. Contrary to what some may think: to bake an apple pie, one does not first need
to invent the universe. References exist. Other mathematicians exist. No one works in a vacuum.

On the other hand, there is something oddly satisfying about seeing the exact criteria that specify what a set is.
It is kind of like reading through the ingredients on an energy drink, or knowing that one could sit down and
scan through the entire terms and conditions of an end user license agreement. Knowing that something has been
scrutinized to down to atoms can be a fascinating reward of its own. At the very least, a great manymathematicians
seem to think so.

Sets Are Determined by Their Elements

Two sets are equal exactly when they have the same elements:

Axiom 1.21 (Extent).
(x = y) = ∀z((z ∈ x) = (z ∈ y)).

As we shall see, a set-isomorphism (or bijection) is essentially a bidirectional function that tells us how to obtain
any element of the first set from the second set and vice versa. Whenever we assert the equivalence of two sets via
bijection, we are implicitly using the Axiom of Extent.
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Existence of Unordered Pairs

For any pair of elements there exists a set containing exactly those elements:

Axiom 1.22 (Pairing).
∀a∀b∃x∀c((x ∈ c) ≤ ((x = a)∨ (x = b))).

The unordered pair defined above is unique by extensionality. We write {a, b} for any sets a and b. In the case
a = b, we may write {a}, the singleton containing just a. Note that a ̸= {a}. Note also that {a, b} = {b, a}.

Existence of Power Sets

We denote subsets by writing y ⊆ x to mean

∀z((z ∈ y) ≤ (z ∈ x)),

which reads “anything in ymust also be in x.”

There exists a set of all subsets of any set x, and by asserting the existence of it, we get all the subsets at once.

Axiom 1.23 (Power set).
∀x∃p∀y((y ∈ p) = (y ⊆ x)).

We call this set the power set of x and denote itP(x).

Existence of Unions

There exists for every set x a set y =
S
x for which z ∈ y exactly when z is an element of some element of x.

The set y is called the union of x.

Axiom 1.24 (Union).
∀x∃y∀z((z ∈ y) = ∃w(z ∈ w ∈ x))

In the case of x = {x1, . . . , xn}we write

[
x =

n[

i=1

xi = x1 ∪ · · · ∪ xn.

For the dual concept (intersection of a set), see the separation schema.
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Existence of Inductive Sets

There exists a set containing the empty set that is stable under the successor function:

Axiom 1.25 (Induction).
∃s(∅ ∈ s∧ ∀x((x ∈ s) ≤ (x++ ∈ s))).

We call such a set an inductive set. The smallest inductive set (i.e. the intersection of all the inductive sets) isN.

In particular, this axiom is the only thing that guarantees that any sets exist at all.

That is, at least one set exists becauseN exists, and every set in the universe of sets is thus essentially either a subset
ofN or a subset of one of its power sets. Look up “von Neumann hierarchy” for more precise details on this.

The setN is also sometimes denotedω, for “first infinite ordinal.” Ordinals and their arithmetic are just barely
beyond the scope of this book; the interested reader is enouraged to explore further on their own.

Definiable Subclasses of Sets are Sets

The intersection of a set with a class forms another set:

Axiom 1.26 (Separation schema). Forϕ(z, p) a formula, we have

∀x∀p∃y∀z((z ∈ y) = (z ∈ x∧ ϕ(z, p))).

From separation, we get the existence of the empty set, and also the existence of intersections and complements.

∃∅,
\

x = {u : ∀y(u ∈ y ∈ x)}, x \ y = {z : (z ∈ x)∧ (z /∈ y)}

We also get the existence of subsets, but in a controlled way: one can only create a subset from an existing set.

This is different from the comprehension schemawhich falsely states that one can take subsets of any class.
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Set-Images are Sets

The image of function whose domain is a set must be a set:

Axiom 1.27 (Replacement schema). Forϕ(x, y, p) a formula, we have

∀x∀y∀z(ϕ(x, y, p)∧ ϕ(x, z, p) ≤ (y = z)) ≤ ∀z∃w∀y(y ∈ w = (∃x ∈ z)ϕ(x, y, p)).

All Sets areWell Founded

There are no infinite membership chains and no cyclic membership loops:

every chain of elementhood has an ∈-minimal element.

Axiom 1.28 (Foundation).
∀s((s ̸= ∅) ≤ (∃x ∈ s)(s ∩ x ̸= ∅))

In particular, x ∈ x never happens.
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Construction: Cartesian Products

Sometimes there is some confusion as to how functions, ordered pairs, and Cartesian products are defined, since
they’re usually defined in terms of each other. That is, arbitrary Cartesian products are sets of functions, but
functions are defined to be collections of ordered pairs and hence subsets of a binary Cartesian product. Here we
offer a possible way to clarify things: the key is to distinguish between “Kuratowski ordered pair” and “2–tuple.”

Binary Proto-Products

First, we define a binary proto-product to be a collection of Kuratowski ordered pairs, whose first element is drawn
from the first set of the proto-product and whose second element is drawn from the second set.

Definition 1.29. Let X and Y be sets. Define the binary proto-product

⟨⟨X, Y⟩⟩ :=
�
{{x}, {x, y}} : x ∈ X, y ∈ Y

	

This exists as a subset ofP(P(X ∪ Y)).

The prefix “proto-” suggests these objects are essentially temporary definitions: proto-products will be replaced by
Cartesian products.

Spaces of Proto-Maps

We then use the proto-product to define proto-maps, which are kind of like functions, except built from proto-
products instead of Cartesian products.

Definition 1.30. Let X and Y be sets. Define the space of proto-maps

⟨⟨X; Y⟩⟩ :=
�
f ⊂ ⟨⟨X, Y⟩⟩ : ∀x ∈ X ∃!y ∈ Y such that {{x}, {x, y}} ∈ f

	
.

This exists as a subset ofP(⟨⟨X, Y⟩⟩).

We define proto-maps so that Cartesian products will have a function-like object that may be used to specify
elements of the product.
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Cartesian Products

Cartesian products are then collections of proto-maps from some index set.

Definition 1.31. Let {Xι}ι∈J be a collection of indexed sets with index set J,

which exists as an element of ⟨⟨J; P (
S

ι Xι)⟩⟩,

i.e. the collection is a proto-map whose Kuratowski ordered pairs look like {{ι}, {ι, Xι}}.

Define the arbitrary Cartesian product to be a subset of the proto-map space

Y

ι

Xι ⊂
**

J;
[

ι

Xι

++

such that the elements are proto-mapsϕ : J → S
ι Xι

whose Kuratowski ordered pairs look like {{ι}, {ι, xι}}where xι ∈ Xι.

In particular, n = {0, . . . , n− 1} ∈ Nmay serve as an index set.

Definition 1.32.The finite Cartesian product is then

X1 × · · · × Xn =

nY

i=1

Xi ⊂
**

n;

n[

i=1

Xi

++
.

Elements of a finite Cartesian product with n factors are calledn–tuples.

For example,

X1 × X2 × X3 =

3Y

i=1

Xi

has 3-tuples as elements, where each 3-tuple (x1, x2, x3) is a function

ϕ : 3 →
3[

i=1

Xi

such thatϕ(0) = x1 ∈ X1, ϕ(1) = x2 ∈ X2, ϕ(2) = x3 ∈ X3.
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Relations are Subsets of Cartesian Products

Definition 1.33.Define ann-ary relation to be any subset of
Qn

i=1 Xi.

The three major kinds of binary relations are orderings, equivalence relations, and functions.

The Axiom of Choice

Given any collection of sets, each containing at least one element,
it is possible to construct a new set by choosing one element from each set.

Axiom 1.34 (Choice). Every family of nonempty sets has a choice function.

There are several equivalent formulations, one of which is:

Axiom 1.35 (Weak Tychonoff). An arbitrary Cartesian product of nonempty sets is itself nonempty.

The Banach-Tarski Phenomenon

Choice can lead to bizarre consequences, one of which is the Banach-Tarski phenomenon (pictured above):

Given a solid ball in 3-space, there is a decomposition of that ball into finitely many disjoint subsets such
that those subsets can then be reassembled to form two identical copies of the original ball.

The construction involves non-measurable sets, which we will cover in Chapter 10.
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Platonism, Formalism, Intuitionism

A nontrivial number of mathematicians do not accept the axiom of choice as valid. Then again, the same could
be said of excluded middle. There is a philosphical cost to doing mathematics, in that one must include in one’s
assumptions hypotheses which lead to wild conclusions. What can we make, then, of a formal system that deduces
results such as the Banach-Tarski phenomenon?

There are several approaches. Here are three popular ones:

Platonism Mathematics exists in a realm independent from physical reality, i.e. independent of the humanminds
which record it. Banach-Tarski is then a real fact which happens to disagree with our preconceived physical
intuition.

Formalism Mathematics is but a formal game played with symbols, and Banach-Tarski an amusing yet valid
result, provided one assumes choice.

Intuitionism Mathematics ought to be formed from constructed objects instead of abstract characterizations.
Intuitionists reject choice, and so Banach-Tarski is moot to them.

Don’t worry if you do not feel committed to any particular stance yet.
Sometimes the best answer one can give to a question is an honest “I don’t know.”
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1.4 Relation andNumber

In this section we cover the major kinds of binary relations and the standard number systems.

Homogeneous Binary Relations

Definition 1.36.A relation R ⊆ X× Y is homogeneous if X = Y.

Three examples of homogeneous relations x1Rx2 are:

• The trivial relation R = ∅, which holds for no (x1, x2) ∈ X2;

• The universal relation R = X2, which holds for any (x1, x2) ∈ X2;

• The identity relation R = id, which holds when x1 = x2.

The following illustration may be helpful.

trivial universal identity

Preorders are the most general type of ordered set.

A partial order are special kind of preorder; a total order is a special kind of partial order.

Preordered Sets

Definition 1.37.A homogeneous relation R is:

• reflexive when id ⊆ R

• transitive when (xRy∧ yRz) ≤ xRz for all x, y, z ∈ X.

A homogeneous relation that is both reflexive and transitive is called a preorder.

• A preorder is symmetric if xRy = yRx;

a symmetric preorder is also known as an equivalence relation.

• A preorder is antisymmetric if ((xRy∧ yRx) ≤ (x = y));

an antisymmetric preorder is also known as a partial order.
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Partially Ordered Sets

Definition 1.38.A set equipped with a partial order is called a poset.

Posets are the simplest environment in which one can reason about boundedness.

Definition 1.39. Let (X,≤) be a poset, S ⊆ X.

We saym ∈ X is a lower bound of S

(and that S is bounded below)

ifm ≤ s for every s ∈ S.

We sayM ∈ X is an upper bound of S

(and that S is bounded above)

if s ≤ M for every s ∈ S.

If S is bounded both below and above, then we say S is bounded.

We sayM ∈ X is themeet or least upper bound
or supremum of S (denoted

W
S or supS)

ifM is an upper bound of S

and if for any upper boundM ′ of S,

we haveM ≤ M ′.

We saym ∈ X is the join or greatest lower bound
or infimum of S (denoted

V
S or inf S)

ifm is a lower bound of S

and if for any lower boundm ′ of S,

we havem ′ ≤ m.

A lattice is a special kind of poset.

Definition 1.40.A lattice is a poset stable under finite meets and joins;

a lattice is completewhen stable under arbitary meets and joins.

We move from poset to poset via monotone (order preserving) and antitone (order reversing) maps.

Definition 1.41. Let (X,≤X) and (Y,≤Y) be partially ordered sets. A function

f : X → Y

ismonotone if for all x, y ∈ Xwe have

(x ≤X y) ≤ (f(x) ≤Y f(y)),

and antitone if for all x, y ∈ Xwe have

(x ≤X y) ≤ (f(y) ≤Y f(x)).

Note that the composition of an even number of antitone maps forms a monotone map.
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Totally Ordered Sets

The real numbersR form a totally ordered lattice.

Note, however, that even thoughR is complete in other senses (i.e. as a metric space),R is not lattice-complete
becuase the sequence (si)i ⊂ R given by si = i has no supremum inR.

Adding in a global upper bound+∞ := ⊤ and a global lower bound−∞ := ⊥ fixes this problem.

As a result, the extended real numbers
R =

[
{−∞, R, +∞}

form a complete totally ordered bounded lattice.

Definition 1.42.An interval is a set of one of the following forms:

(a, a) := {x ∈ R : a < x < a} = ∅
(a, a] := {x ∈ R : a < x ≤ a} = ∅
[a, a) := {x ∈ R : a ≤ x < a} = ∅
[a, a] := {x ∈ R : a ≤ x ≤ a} = {a}

(a, b) := {x ∈ R : a < x < b}

(a, b] := {x ∈ R : a < x ≤ b}

[a, b) := {x ∈ R : a ≤ x < b}

[a, b] := {x ∈ R : a ≤ x ≤ b}

where a < b ∈ R. The latter four intervals contain at least two points and are thus called nondegenerate.

Intervals where neither a nor b is either+∞ or−∞ are called bounded.

In our new interval notation, we have:

R = (−∞,∞) and R = [−∞,+∞].

Using the smooth maps

f(x) = λε arctan x, f−1(y) = tan (y/λε) , λε = ε/(π/2) ∈ (0,∞)

and interpreting the asympotic values in the obvious way, we get the open and closed bounded images

f∗(R) = (−ε, ε) and f∗

R
�
= [−ε, ε].

This is particularly nice, as it implies the parametrized curves

γ : (−ε, ε) → Ω, γ : [−ε, ε] → Ω

have images either diffeomorphic toR (in the open case) or homeomorphic toR (in the closed case).

For example, one can think of γ as the world-line of a particle traveling through a model of space-time.
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Equivalence Relations

First let’s revisit what it means for an subset σ ⊆ X× X to be an equivalence relation on X:

Definition 1.43.An equivalence relation is a relation on X that is:

• Reflexive: σ(x, x) for all x ∈ X

• Symmetric: σ(x, x ′) = σ(x ′, x) for all x, x ′ ∈ X

• Transitive:

σ(x, x ′) ∧ σ(x ′, x ′′)

�
≤ σ(x, x ′′) for all x, x ′, x ′′ ∈ X

where σ(x, x ′) is shorthand for the proposition (x, x ′) ∈ σ.

Proposition 1.44. The set ΣX of all equivalence relations on X forms a complete lattice.

Proof. Let’s identify the lattice components.

The partial order is:

(σ1 ≤ σ2 ) =
�
σ1(x, x

′) ≤ σ2(x, x
′) for all (x, x ′) ∈ X× X

�

The meet (which always exists) is: ^

ι

σι =
\

ι

σι

The join (which always exists) is:
_

ι

σι =

 [

ι

σι

!+

where R+ is the intersection of all the transitive relations containing R as a subset (i.e. the transitive closure).

This lattice has a⊥ (identity) and a⊤ (universal relation), making it a bounded complete lattice. ■

For a concrete example, take X = RR, and define a series of equivalence relations σi where σi(f, g) exactly when
the first i terms of their Taylor series around x = 0 agree.

Here’s a taste of what these relations are like:

σ1(exp(x)− 1, x), σ2(sin x, x), σ3(cos x, 1+ x2/2)

These relations form a totally ordered sublattice (or chain):

σ0 ≤ σ1 ≤ σ2 ≤ · · · ≤ τ

where two functions f, g : R → R are τ-equivalent exactly when they agree on some open neighborhood of 0.

Note that while τ is a strict upper bound of the σi relations, it is not a supremum! This is a fancy way of encoding
the observation that two real functions can have the same Taylor series about a point without coinciding.
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Functions and Invertibility

Nowwe shift focus to relations R ⊆ X× Y where X does not necessarily equal Y.

Definition 1.45. Let R ⊆ X× Y be a relation. We say R is

• left-total if for all x ∈ X there is some y ∈ Y such that xRy

• right-total if for all y ∈ Y there is some x ∈ X such that xRy

• left-unique if for all y ∈ Y, (xRy∧ x ′Ry) ≤ (x = x ′)

• right-unique if for all x ∈ X, (xRy∧ xRy ′) ≤ (y = y ′)

We then say that R is

• a partial function if R is right-unique but not necessarily left-total,

• amultivalued function if R is left-total but not necessarily right-unique,

• a (well-defined) function if R is both left-total and right-unique.

Note that this definition of function is simply a more verbose restating of the definition previously given.

We can also use the above four criteria to define when a function can be undone.

Definition 1.46. If f : X → Y is a function, then we say that f is

• injective or left-invertible if f is also left-unique,

• surjective or right-invertible if f is also right-total,

• bijective or invertible if f is also both left-unique and right-total.

Related to the adjectives above are the following nouns:

• injective functions are also called injections,

• surjective functions are also called surjections,

• bijective functions are also called bijections, or in certain cases set-isomorphisms.

Definition 1.47 (More on left-invertibility and right-invertibility).

The identity map on a set S is the map 1S : S → S given by s 7→ s.

Left-inverses (i.e. functions ℓ : Y → X such that ℓ ◦ f = 1X) are also called retractions.

Right-inverses (i.e. functions r : Y → X such that f ◦ r = 1Y) are also called sections.
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The Image and PreimageMaps

One can send subsets forwards and backwards through functions.

Definition 1.48. Let f : X → Y be a function. There are functions

f∗ : P(X) → P(Y) and f∗ : P(Y) → P(X)

called image and preimage, respectively given by

f∗(A) = {y ∈ Y : ∃x ∈ A such that f(x) = y} and f∗(B) = {x ∈ X : f(x) ∈ B}.

Note that image respects the order of composition whereas preimage reverses the order of composition:

(g ◦ f)∗ = g∗ ◦ f∗ and (g ◦ f)∗ = f∗ ◦ g∗.

In slightly more ornate language, we say image is covariant and preimage is contravariant.

Proposition 1.49. Let f : X → Y with S ⊆ Z ⊆ X and T ⊆ W ⊆ Y. Then:

1. f∗(S) ⊆ f∗(Z).

2. f∗(T) ⊆ f∗(W).

3. Z ⊆ f∗(f∗(Z)).

4. f∗(f∗(W)) ⊆ W.

5. If f is injective then f∗(f∗(Z)) ⊆ Z.

6. If f is surjective thenW ⊆ f∗(f∗(W)).

Proof. We’ll show all of these step by step so that the reader can get an idea of how these work. All of them are
easy once one understands the general pattern.

1. Let s ∈ f∗(S). Then by definition of image, there is some s ′ ∈ S such that f(s ′) = s. But s ′ ∈ Z since
S ⊆ Z. By definition of image, there is some s ′ ∈ Z such that f(s ′) = s, so s ∈ f∗(Z).

2. Let t ∈ f∗(T). Then by definition of preimage, f(t) ∈ T . But f(t) ∈ W since T ⊆ W. By definition of
preimage, t ∈ f∗(W).

3. Let z ∈ Z. Then f(z) ∈ f∗(Z) by definition of image, and z ∈ f∗(f∗(Z)) by definition of preimage.

4. Letw ∈ f∗(f∗(W)). Then by definition of image, there is somew ′ ∈ f∗(W) such that f(w ′) = w, so
w ∈ W by definition of preimage.

5. Let f be injective and let z ∈ f∗(f∗(Z)). Then by definition of preimage, f(z) ∈ f∗(Z). By definition of
image, there is some z ′ ∈ Z such that f(z) = f(z ′). But by injectivity of f, we must have z = z ′, so z ∈ Z.

6. Let f be surjective and letw ∈ W. Thenw ∈ Y sinceW ⊆ Y. By surjectivity of f, there is somew ′ ∈ X

such that f(w ′) = w. By definition of preimage,w ′ ∈ f∗(W). By definition of image,w ∈ f∗(f∗(W)).

For practice, it might be helpful to do these on your own without looking at this page. ■
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Functions and Set Operations

Here’s how image and preimage behave with respect to union, intersection, and complement:

Proposition 1.50. Let f be a function. Then

f∗

 [

ι∈J

Xι

!
=
[

ι∈J

f∗(Xι) f∗
 [

ι∈J

Yι

!
=
[

ι∈J

f∗(Yι)

f∗

 \

ι∈J

Xι

!
⊆
\

ι∈J

f∗(Xι) f∗
 \

ι∈J

Yι

!
=
\

ι∈J

f∗(Yι)

f∗(X
c) ⊆ (f∗(X))

c
f∗(Yc) = (f∗(Y))c

with equality in the intersection image case when f is injective,
and equality in the complement image case when f is surjective.

Check these if you feel the need to do so. The proofs are very similar to the proof of the previous proposition,
with the only novelty being that one must invoke the definitions of intersection, union, and complement.

Note that by the above result, preimages are “nicer” than images. A more precise way of stating this is that the
preimage map forms a homomorphism of lattices (i.e. preserves all of the lattice structure), whereas the image map
does not form a homomorphism of lattices due to its failure to preserve intersections.

More on Functions and Equivalence Relations

Equivalance relations often organize sets in the following way.

Definition 1.51. Let X be a set, and σ ⊂ X× X an equivalence relation.

The quotient set X/σ is then the partition whose parts are equivalence classes of σ,

i.e. collections of elements of Xwhich are all related to each other via σ.

The equivalence classes of a quotient are pairwise disjoint, and their union is all of X. We will not prove this next
proposition, since it should be clear by now what’s going on: the isomorphism is inevitablyϕ([x]f) = f(x).

Proposition 1.52 (Canonical Decomposition in Set).

Every function f : X → Y defines an equivalence relation ∼f where x ∼f x
′ exactly when f(x) = f(x ′).

Furthermore, we have a decomposition

X X/∼f f∗(X) Yπ ϕ ι

where π is a surjection,ϕ is a bijection, and ι is an injection.
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Cantor’s Theorem

Theorem 1.53. Let X be a set. Then |P(X)| > |X|.

Proof. We will show that any map f : X → P(X) cannot be surjective.

Suppose otherwise, and let Y = {x ∈ X : x /∈ f(x)}. Then there exists ξ ∈ X such that f(ξ) = Y. But by
construction, ξ ∈ Y if and only if ξ /∈ f(ξ) = Y. This is a contradiction, so f cannot be surjective.

On the other hand, g : X → P(X) given by g(x) = {x} is injective, so

|P(X)| > |X|

as desired. ■

The Schröder-Bernstein Theorem

Here we prove that two opposing injections between two sets is enough to establish a bijection between the sets.
As we will see, this is, at its core, a result about fixed points of monotone functions on complete lattices.

Theorem 1.54 (Knaster-Tarski). Let L be a complete lattice and f : L → L a monotone function. Then

α =
_

{x ∈ L : x ≤ f(x)}

is a fixed point of f. Further, α is the greatest fixed point of f.

Proof. Let H = {x ∈ L : x ≤ f(x)}. For all x ∈ H we have x ≤ α, so x ≤ f(x) ≤ f(α). Thus f(α) is
an upper bound of H, so that α ≤ f(α). By monotonicity of f we have f(α) ≤ f(f(α)). So f(α) ∈ H, i.e.
f(α) ≤ α. So α is a fixed point of f. If f(β) = β then β ∈ H and so β ≤ α. ■

Corollary 1.55 (Banach’s Decomposition). Let X and Y be sets with f : X → Y and g : Y → X. Then there
exist disjoint subsets X1 and X2 of X and Y1 and Y2 of Y such that f(X1) = Y1, g(Y2) = X2, X = X1 ⊔ X2

and Y = Y1 ⊔ Y2.

Proof. The key observation is thatP(X) andP(Y) form complete lattices. For any setS, letαS : P(S) → P(S)

denote complement, i.e. αS(T) = S \ T . Then define

φ : P(X) → P(X) via S 7→ αX ◦ g∗ ◦ αY ◦ f∗(S).
Sinceφ is the composition of two monotone functions and two antitone functions, it is itself monotone. Apply
Knaster-Tarski to obtain a fixed point. ■

Theorem 1.56 (Schröder-Bernstein). Let X and Y be sets and suppose there exist injective maps f : X → Y and
g : Y → X. Then there is a bijective map h : X → Y.

Proof. Let f and g as in the Banach decomposition theorem be injective. Then we may set

h : X → Y

to be defined as f onA and g−1 on X \A. This completes the proof. ■
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Enumerating Z andQ

We now discuss bijections from the naturals to the integers and rationals (and why the reals are different).

One way to enumerate the integers is to note that every integer can be written as a sum of powers of−2 in a
unique way. This is sometimes called negative binary.

For example,−1 = 11−2 and 8 = 11000−2.

So we can get an enumeration of the integers by simply counting in base−2.

Here are the first few terms of that enumeration:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

mn 0 1 −2 −1 4 5 2 3 −8 −7 −10 −9 −4

Note how the enumeration alternates between 1 positive number, then 2 negative numbers, then 4 positive
numbers, and so on. This gives us a bijection f : N → Z.

One way to enumerate the rationals is to use our bijection from the previous enumeration combined with the
fundamental theorem of arithmetic: send n to f(n), then map all of the exponents ei in the prime factorization
of f(n) to f(ei).

Here are the first few terms of that enumeration:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

mn 0 1 −2 −1 1
4

5 2 3 −1
2

−7 −10 −1
9

−1
4

This gives us a bijection g : N → Q .

Cantor’s Diagonal Argument

We already know the reals are impossible to enumerate due to Cantor’s theorem, but there’s a classic argument
here that’s worth getting into. Consider the real numbers between 0 and 1 represented as binary strings, and
suppose we had an enumeration:

0) 0.01010101101101011011010101010100101101011011...

1) 0.00001101011111010001011010110110100101001010...

2) 0.01101010011101011000100010101110110010010101...

3) 0.10010101011110101110110101010011010100100100...

4) 0.11110100101010100101010100111101010101001010...

5) 0.00000000000000000111010101010101011010101010...

...

Then, simply by flipping the nth bit (to the right of the decimal point) of the n− 1th number, we obtain

ω) 0.110011011101001001010001010101010100100100110...

which is a number not on our list. This isCantor’s diagonal argument.
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Number Systems: Algebra

In this subsection, we analyze the algebraic structure of Z andQ , temporarily ignoring the order structure.

Rings, Domains, and Fields

Definition 1.57.A ring is an ordered pair ((R,+, 0), ·)where:

1. The first element, an ordered triple (R,+, 0), forms an abelian group:

a) a+ b = b+ a for all a, b ∈ R

b) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R

c) a+ 0 = a for all a ∈ R

d) For every a ∈ R there is a unique−a ∈ R such that a+ (−a) = 0

2. The second element is a binary operation · : R× R → R given by ·(a, b) = ab satisfying:

a) (ab)c = a(bc)

b) (a+ b)(c+ d) = ac+ ad+ bc+ bd

Rings are very general objects, so we qualify them further in order to keep sane:

Definition 1.58. Some miscellaneous ring terms:

• A unital ring is a triple ((R,+, 0), ·, 1)where ((R,+, 0), ·) forms a ring

and where 1 ∈ R is such that a1 = a = 1a for all a ∈ R.

• A ring ((R,+, 0), ·) is commutative if ab = ba for all a, b ∈ R.

• The zero ring ((R,+, 0), ·, 1) is a commutative unital ring where R = {0} (thus 1 = 0)

and where the operations+ and · are defined such that 0+ 0 = 0 and 00 = 0.

• A ring ((R,+, 0), ·) is said to have the cancellation property if
�
(a ̸= 0)∧ (ab = ac)

�
≤ (b = c)

for all a, b, c ∈ R.

• A nonzero commutative unital ring ((R,+, 0), ·, 1)with the cancellation property is called a domain.

• The unit group of a unital ring ((R,+, 0), ·, 1) is the triple (R×, ·, 1)

where R× ⊂ R is the subset of elements in Rwith a multiplicative inverse.

• A domain for which R× = R \ {0} is called a field.

Notably, the integers Z form a domain and the rationalsQ form a field.
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As one might predict, rings form a subcategory of Set, which we’ll call Ring;
similarly, fields form a subcategory of Ring, which we’ll call Field.

The arrows in Ring are maps that preserve both the additive group structure and the ring multiplication:

Definition 1.59. Let R and S be rings.

A ring homomorphism is a functionφ : R → S such that:

φ(ab+ cd) = φ(a)φ(b) +φ(c)φ(d).

If, furthermore, R and S are both unital, we also requireφ(1R) = 1S.

A ring isomorphism is a bijective ring homomorphism.

Arrows in Field don’t have a stricter definition, but nonetheless have stricter structure. For example, every field
homomorphismφ : K → L is injective, so that we usually think of L as an extension ofK and writeK ⊂ L.

Definition 1.60.The field of fractions of a domain R is the quotient set

Frac(R) :=

R× R \ {0}

�
/ ∼

where (a, b) ∼ (c, d) exactly when ac = bd. As the name might suggest, this forms a field.

The archetypal example is of courseQ = Frac(Z).

Ideals of a Ring

Definition 1.61.An ideal I of a ring R is a subset of R closed under I–addition and R–multiplication.

• Note that {0} forms an ideal, denoted (0).

• Similarly, R forms an ideal, denoted (1).

• Ideals are used to form quotient rings via the equivalence relation

(a ∼I b) = a− b ∈ I.

• We say I is prime if (ab ∈ I) ≤ (a ∈ I∨ b ∈ I) for all a, b ∈ R.

– The quotient of a ring by a prime ideal is an domain.

• We say I ismaximal if

I ⊆ X ⊆ R

�
≤


X = I ∧ X = R

�
for any ideal X of R.

– The quotient of a ring by a maximal ideal is a field.
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Some examples and observations:

• For Z, the maximal ideals are (p) for all primes p ∈ Z, and the prime ideals are the maximal ideals plus (0).

• For a field (i.e. forQ ), the only maximal/prime ideal is (0).

• An example of a noncommutative ring is the set of n× nmatrices Matn(R)with entries in a ring R.
The unit group of Matn(R) is denoted GL(n, R).

• Note that noncommutative rings have left-ideals and right-ideals, something we probably won’t explore
further (as this gets very complicated very quickly). Also note that R can itself be a matrix ring; we may
explore this later.

• Given an ordered field Γ , the set of all Cauchy sequences κ(Γ) forms an ordered ring. The set of all Cauchy
sequences tending to zero forms a maximal idealm0, so that κ(Γ)/m0 forms a field. We give more details
on this in the next subsection.

• In particular, the real numbers as an algebraic structure may be defined asR := κ(Q )/m0.

• An example of a nonzero commutative unital ring without the cancellation property isC∞(R),
the ring of smooth functions f : R → R.

Indeed, consider the smooth functions:

f(x) =

�
exp(−1/x) x > 0

0 otherwise
and g(x) =

�
exp(1/x) x < 0

0 otherwise

Note that f ̸= 0 and g ̸= 0, yet fg = 0.

We will revisit the ringC∞(R) in the future when we study calculus and differential equations.

Polynomial Rings

Definition 1.62.The center of a ring R, denotedZ(R), is the largest commutative subring of R.

AnR–algebra is a pair (A,φ)whereA is a ring andφ : R → Z(A) is a ring homomorphism.

The archetypal example of a R–algebra is the ring of polynomials in one variable with coefficients in R,
denoted R[ξ]. We define R[ξ,η] := (R[ξ])[η]. If ξ is a domain, so is R[ξ]. However, when K is a field, the
polynomial ringK[ξ] is only a field in the most trivial circumstances.

Definition 1.63.The complex numbers can be formed via the quotient

C :=
R[ξ]

(ξ2 + 1)
.

Since (ξ2 + 1) is maximal inR[ξ], this forms a field.
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Number Systems: Order

We now reintroduce the order structure onto Z (an ordered domain) andQ (an ordered field).

Definition 1.64.An ordered ring is a 6-tuple (F,+, ·, 0, 1,<) such that:

• (F,+, ·, 0, 1) forms a nonzero commutative unital ring

• for all x ∈ F, x ̸< x

• for all x, y, z ∈ F, if x < y and y < z then x < z

• for all x, y ∈ F, one of the following hold:

x < y, y < x, x = y

• for all x, y, z ∈ F, if x < y then x+ z < y+ z

• for all x, y, z ∈ F, if x < y and 0 < z then x · z < y · z

That is, an ordered ring is a set in which one can add, subtract, multiply, and compare elements.

An ordered field is an ordered ring in which one can divide by nonzero elements.

The elements of an ordered ring can be divided into positive, negative, and 0.

This is enough to have an absolute value.

Definition 1.65. Let X be an ordered ring.

If ν : X → X is such that:

• for all x ∈ X, ν(x) ≥ 0

• for all x ∈ X, (ν(x) = 0) = (x = 0)

• for all x, y ∈ X, ν(xy) = ν(x)ν(y)

• for all x, y ∈ X, ν(x+ y) ≤ ν(x) + ν(y)

then ν is called an absolute value.

Ordered Fields: Convex Cones

Definition 1.66. Let Γ be an ordered field.

The positive convex cone of Γ is simply its positive elements. We denote this cone by Γ+.

The nonnegative convex cone of Γ is the union of its positive elements with 0. We denote this cone by Γ≥0.

From this definition, we observe that N = Q≥0 ∩ Z and N = Q+ ∩ Z.
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Ordered Fields: Cauchy Sequences

Throughout this subsubsection, let Γ be an ordered field. We denote the absolute value on Γ by | · |.

Definition 1.67.Denote by Γ+ the positive elements of Γ .

A sequence (xn)n ⊆ Γ isCauchy if for any ε ∈ Γ+ there is anN ∈ N such that

n,n ′ ≥ N implies |xn ′ − xn| < ε.

Denote by κ(Γ) the set of all Cauchy sequences on Γ .

Because Γ is an ordered field, we may add and multiply sequences with entries in Γ pointwise,

i.e. by adding or multiplying their terms together.

Proposition 1.68. κ(Γ) is closed under addition.

Proof. Let (an)n, (bn)n ∈ κ(Γ), and let ε > 0. Then ε/2 > 0 as well, so there existsNa such that for all
n,n ′ ≥ Na we have

|an − an ′ | < ε/2,

and anNb such that for all n,n ′ ≥ Nb we have

|bn − bn ′ | < ε/2.

LetN = max({Na, Nb}). Then by the triangle inequality,

|(an + bn)− (an ′ + bn ′)| ≤ |an − an ′ |+ |bn − bn ′ | < ε/2+ ε/2 = ε,

so (an + bn)n ∈ κ(Γ). ■

Proposition 1.69. If (xn)n is Cauchy, then there is anM ∈ Γ+ such that

|xn| < M

for all nonnegative n.

Proof. Let ε = 1. Then there exists anN such that for allm,n ≥ N we have |xn − xm| < 1. LetM =

max({|x0|, . . . , |xN|}) + 1. Clearly |xn| < M for all n ≤ N. Now suppose n > N. Then

|xn| = |xn − xN + xN| ≤ |xn − xN|+ |xN| < M

so in all cases (xn)n is bounded byM. ■
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Proposition 1.70. κ(Γ) is closed under multiplication.

Proof. Let (an)n, (bn)n ∈ κ(Γ). By the previous proposition, there existMa ∈ Γ+ bounding (an)n and
Mb ∈ Γ+ bounding (bn)n. Let ε ∈ Γ+ so that λ = ε

Ma+Mb
∈ Γ+ as well. Since (an)n is Cauchy, there exists

Na ∈ N such that for alln,n ′ ≥ Na, we have |an − an ′ | < λ and alsoNb ∈ N such that for alln,n ′ ≥ Nb,
we have |bn − bn ′ | < λ. PickN = max({Na, Nb}). Then

|anbn − an ′bn ′ | = |anbn − anbn ′ + anbn ′ − an ′bn ′ |

≤ |an||bn − bn ′ |+ |an − an ′ ||bn ′ |

< λ(Ma +Mb) = ε.

Thus, (anbn)n is Cauchy. ■

Definition 1.71. Say that (an)n ∈ κ(Γ) tends to zero if for every ε ∈ Γ+ there is someNε ∈ N such that
for all n ≥ N, we have |an| < ε.

Say (an)n ∼3 (bn)n if (an − bn)n tends to zero.

Proposition 1.72. The Cauchy sequences tending to zero form a maximal ideal of κ(Γ).

Proof. The idea is once one throws in a Cauchy sequence tending toward some nonzero number (say 1), one
can then scale that Cauchy sequence by any number r ∈ Γ to get a Cauchy sequence tending toward r. ■

Complex Numbers: Absence of Total Order

Suppose it were possible to impose a total order onC. Then every nonzero element ofCwould be either positive
or negative. Let’s check i, the imaginary unit. Suppose i were positive. Then i > 0. But positive numbers form a
convex cone, i.e. if one squares a positive number, it ought to stay positive. However, i2 = −1 < 0. Now suppose
i were negative. Then−i would be positive. But squaring this supposedly positive number yields

(−i)2 = (−1)2i2 = i2 = −1 < 0.

Since we can’t even sort i as either positive or negative, there is no way we could sort all ofC× into positive and
negative subsets. So even though the complex numbers are algebraically closed and contain the real numbersR as
a subfield, we do lose something when we go fromR toC, namely the ability to compare any two elements in a
globally consistent way.

Though this is fairly obvious, it can lead to some bizzare consequences.

For example, in a real inner product space (see Chapter 3), a hyperplane basically bifurcates its complement into a
part that’s “above” the hyperplane and a part that’s “below” the hyperplane. For complex inner product spaces,
the complement of a hyperplane is actually simply connected. Thus, complex hyperplanes don’t have “sides:” if
they did, this would imply thatC could be totally ordered!

Perhaps the reals aren’t so pathological after all.
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