CHAPTER I

SoME LoGic AND SET THEORY

This chapter will develop:

* fluency with the logic of propositions (order zero) and predicates (order one),
* familiarity with the axioms of Zermelo-Fraenkel set theory with Choice,

* a working understanding of relations, functions, and numbers.

It sets the foundation for the sequel, which begins with an introduction to general topology.

For §1.1 on propositional logic:

The organizing theme will be to view logical objects as functions defined with respect to a two element set of
truth values

V={Ll,T}

the truth values themselves are “nullary truth functions,” the identity and negation operators “unary truth func-
tions,” and the classical logical connectives “binary truth functions.”

This departs from the usual presentation, wherein truth values are assumed intuitive enough to be introduced
without any context, identity is ignored altogether, and negation is lumped in with the connectives even though it
has a fundamentally different character.

Functions are so important to mathematics, though, that this departure is warranted.

We dissect the distinction between a necessary and sufficient condition, a topic often unclear even to native English
speakers. We give examples of logical deduction from a historic trio of axioms (plus a law of inference, modus
ponens), such as deducing transitivity of implication. We show that under each set of logical connectives, there
exists a structure that echoes throughout the rest of the book: the bounded lattice.

For §1.2 on predicate logic:

Probably the most important feature of this chapter is the featuring of Cauchy’s e~ definition of the limit of
a function, which motivates introducing variables, predicates, and quantifiers. We also cover the principle of
mathematical induction and the related idea of well-ordering.
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For §1.3 on Zermelo-Fraenkel with Choice:

Rather than treating the list as a set of commandments to memorize, we focus on what each axiom affords us. The
Axiom of Choice is discussed in terms of three major schools of mathematical philosophy, with the Banach-Tarski
phenomenon used as an illustrative example.

For §1.4 on Relation and Number:

Having touched on general binary relations in the previous section, we begin here with a focus on the homogeneous
case, out of which springs preorderings, partial orderings (antisymmetric preorderings), and total orderings (partial
orderings where everything is comparable). This perspective is worthwhile, e.g. since the real numbers R form a
totally ordered lattice, with R forming a bounded totally ordered complete lattice.

We cover functions in terms of their characterization as left-total and right-unique relations. This sets up in-
vertibility as further satisfying right-totality and left-uniqueness, thus expressing set isomorphisms as exactly
the bidirectionally total-and-unique relations. The capstone is a proof of the Schréder-Bernstein theorem via
Knaster-Tarski, thus establishing the theorem as a corollary of a fixed-point result.

We introduce the integers Z and the rational numbers Q first from an algebraic perspective, then from an order-
theoretic perspective. As a fun bonus, we cover negabinary expansions as a natural way to sequence the integers,
then compose with unique factorization to sequence the rationals. This leads nicely into a presentation of Cantor’s
diagonal argument.

For an arbitrary ordered field I, we cover the ordered ring of Cauchy sequences k(I"). We then provisionally define
R to be k(Q)/mg, where mg denotes the maximal ideal of Cauchy sequences that tend towards zero. In the next
chapter, we prove the completeness of R via nested Cauchy sequences, which bootstraps the proof of the existence
of arbitrary metric space completions.
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1.1 ProrositioNaL LogIc

We begin with a definition that will be used thoughout.

DEFINITION L1. A function f consists of a rule of assignment

for mapping from a domain X to a codomain Y, such that:
every element of the domain is paired with a unique element of the codomain.

To denote functions we write f : X — Y with x — f(x) denoting the rule of assignment.

Now, since we haven’t even defined sets (i.c. domains and codomains) yet, starting with functions might feel like
getting ahead of ourselves. The compromise is that the functions we work with in this chapter will be defined on
a two element set; this is much smaller and thus easier to understand than, say, the uncountable continuum R,
which needs a fair amount of set theory to even be precisely described.

This two element set is

where L denotes false and T denotes true.
A note on finiteness for the careful:

Observe that V has two elements, V2 (all 2-tuples with entries in V) has four elements, and in general V™ (n-tuples
with entries in 1) has 2™ elements. (We define n-tuples formally in §1.3, but they may also be thought of informally
as M things taken at once in a certain order.) A function going from V™ to V must make 2™ binary decisions (i.c.
whether to set each function value to either L or T), so there are 22" possible functions that could go from V™ to
V. Thus, everything involved is finite.

We will soon work with arbitrary (i.e. potentially infinite) sets, though. Here’s why we did not just start with
infinite sets: intuitively, one thinks of a set as an unordered collection of objects with no repeats. However, this
naive conception can lead to logical disaster.

For instance, we have the following argument, known as Russell’s Paradox:

Consider the set of all sets that are not elements of themselves — call this set Q.
On the one hand, if () is an element of itself,
then it is (by definition of ()) not an element of itself.
On the other hand, if Q) is not an element of itself,
then it belongs with all the other sets that aren’t elements of themselves — namely, in Q).

So Q contains itself if and only if () does not contain itself — a contradiction.

We would like to exclude sets like QO from all of mathematics. The working solution is called ZFC, a collection of
axioms and axiom schemata that specify how sets ought to behave. An exploration of ZFC right now would be a
distraction, though we’ll get to it in a moment.
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Thus, we restrict our attention to finite sets, where our intuition is trustworthy. The natural numbers are essentially
a part of the language layer, as in people know of them regardless of whether they care to learn mathematics. Even
nonhuman animals have been observed to count.

TruUTH FUNCTIONS

We now begin our study of propositional logic.

DEFINITION 1.2. A proposition (or statement) is a grammatically correct declarative sentence that can be
assigned exactly one value from V. That is, propositions are true xor false.

We often use the letters P, Q, R, S to denote propositions.
Small detail: truth functions don’t work with propositions directly, but rather with their truth values.

NurLarRYy TRUTH FUNCTIONS

The set VO = {()} consists of exactly one O-tuple (the only possible O-tuple).

Thus we have two nullary truth functions:
1LV 5 Y via ()— 1L, and TV =Y via ()—T.

Thatis, the nullary truth functions are simply the truth values.

UNaARY TRUTH FUNCTIONS

The set V! consists of two 1-tuples, corresponding to the two elements of V.
To each 1-tuple there are two choices of output, spawning a total of four unary truth functions.

@ LP) =1 (2 TP) =T () +(P):=P (4) —(P):=—P

We can describe the unary truth functions in tabular form:
P 1 T +
1 L T 1 T
T 1 T T

Here are some comments on these functions.

* The functions (1) and (2) are exactly the nullary truth functions from before.
* The function (3) is called the identity map. In general, an identity map outputs its input unchanged.

* The function (4) is called negation. It is a consequence of the table above that
P= *(*P)v

a fact known as double negation.
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Binary TRUuTH FUNCTIONS

The set V2 consists of four 2-tuples:
(L, 1), (L,T)y (T,1), (T,T).

Denoting an element of V2 by (P, Q), sixteen binary truth functions follow.

() L(RQ):=1 (5) +P(P,Q):=+P (9 <(RQ):=(P<Q) 1) A(R,Q):=(PAQ)
() T(RQ):=T (6) —P(,Q):=—P (o) 2(RQ)=(P=2Q) () V(RLQ):=(PVQ)
G) =(PFQ=(P=Q) (7)) +Q("Q):=+Q m <PQ:=(P<Q) ) TRQY=(PTQ)
(4) #P,Q)=(P#Q) (8) —Q(RQ):=-Q (12) > (P,Q)=(P>Q) @) L(RQ):=(PLQ)

Note that while we use prefix notation to define these truth functions, in practice one uses infix notation.

We give their descriptions all at once:

P Q L T P=Q P#Q +P —p +Q —Q
L1 1 T T 1 1 T 1 T

L T 1 T 1 T 1 T T 1

T L1 T L T T i i T

T T L T T 1 T i T i

P Q P<Q P>Q P<Q P>Q PAQ PVQ PTQ PlQ
Lo1LT T L L L I T T
LT T i i T

T 11 T 1 T 1 T T i

T T T T i L T T L L

Here are some comments on these functions.

The functions (1) and (2) are exactly the nullary truth functions from before.

Functions (3) biconditional and (4) exclusive disjunction have to do with whether the inputs agree:
(P#Q)=—-(P=Q)

Functions (s - 8) are constructed by restricting to a single input and then applying a unary truth function.

Functions (9) implication, (10) reverse implication, (1r) negated reverse implication, and (12) negated implication
are all asymmetric and transitive binary truth functions.

Functions (13) conjunction aka “and” and (14) inclusive disjunction aka “or (possibly both)”
satisfy both de Morgan’s laws and the distributive laws:

(-P)V(=Q)=—=(PAQ) (-PIN(=Q)=—(PVQ)
PA(QVR)=(PAQ)V (PAR) PV(QAR)=(PVQ)A(PVR)
Implication can be written in terms of negation and inclusive disjunction:

(P<Q=(=PVQ)

Functions (15) negated conjunction aka “nand” and (16) negated inclusive disjunction aka “nor” are interestin:
5) neg J g ) g
because each individually can generate all the other binary truth functions:

~P=PTP=PlP PAQ=-(PTQ PVQ=-(PLQ)

We will return to this shortly.
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CONDITIONAL STATEMENTS

In the proposition P < Q, we call P the antecedent and Q the consequent.
The antecedent suffices for the consequent, whereas the consequent necessitates the antecedent.

Amplifying,
“P is a sufficient condition for Q” holds exactly when “Q is a necessary condition for P.”

Be prepared to recognize the following forms of P < Q:

* “Pimplies Q” or “Q is implied by P”
* “if P then Q” or “Q if P”
* “only if Q then P” or “P only if Q”

The conditional P < Q is the converse to Q < P and the contrapositive of —Q < —P.
* The converse of the converse of a conditional is the original conditional.
* The contrapositive of the contrapositive of a conditional is the original conditional.
LocIicaL DEpucTtiOoN

This refers to the process of starting with a set of assumptions and arriving at a conclusion after a finite number of
steps. We care about truth functions and tabular proof because it is a quick way to get to the truth value of any
proposition; we care about logical deduction because it is a microcosm not dissimilar to how mathematics actually
functions.

THREE Ax10MS + ONE LAW OF INFERENCE

Formally, a propositional calculus can be thought of as a set of propositions, a set of logical connectives, a set of
axioms, and a set of laws of inference. Here is a common starting point:

(1) FP<(Q<P)

(2) FIP<(Q<R)<((P<Q)=<(P<R))
(3) FI(=P<-Q)<(Q<P)

(MP) P(P<QIFQ

The first three lines are axioms where P, Q, etc. can be any propositions.

The remaining line is modus ponens, a law of inference. Laws of inference are distinct from conditionals due to
operating one level above where conditionals are defined: see Lewis Carroll’s “What the Tortoise Said to Achilles”
for an illustration of this distinction.
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The F symbol is called a turnstyle, and any expression involving it should be read as

“given what is left of the turnstyle, we have what is right of the turnstyle.”

Laws of inference thus employ the turnstyle as a kind of meta-conditional; this is essential for describing logical
consequences which themselves include conditional statements.

USING THE AXIOMS AND MoDUS PONENS

The first move is to turn those axioms into inferences via (MP):

(1-i) PE(Q<P)
(2-) (P<(Q<RYFH((P<Q)<(P<R))
(3-i) (-P<-Q)F(Q<P)

Another application of (MP) to (3-i) transforms it into modus tollens:

o) (P <-QLQrP

PROPOSITION 1.3.
(P<Q)(P<(Q<R)F(P<R).

Proor. We start by assuming both P < Q and P < (Q < R). We then may infer that (P < Q) < (P < R) via
(2—1i). Finally we get P < R via modus ponens. |

PROPOSITION 1.4.
(P<Q)(Q<R)F(P<R).

ProOF. Start by assuming both P < Q and Q < R. Then by (1-i), we get P < (Q < R). Finally we get P < R
via Proposition 1.3. |

MEREDITH’S SOLE AXIOM

One of the surprising things about propositional calculus is it only needs one axiom to get off the ground:
(") ((A<LB)<(-C<-D)) <O <BL((ESA)S(D<LA)))

This is known as Meredith’s sole axiom, and from it one can derive the axioms given above.
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MEeTHODS OF PROOF

There are roughly three ways one can approach a proof. We will use as our working example the fact that every
integer is either even or odd. We can structure this in conditional form as follows:

T is an integer < M is either even or odd.
The simplest (but often not easiest) way to prove Q given P is to show P < Q and then use modus ponens:

If is an integer, we may apply division with remainder, which states that for integers a and b there
exists a unique integer quotient q and remainder v such that a =bq +1and 0 < v < b. The only
two possiblilities for v in this case are o and 1; bence, © is either even or odd.

This is called direct proof.

Another way to prove Q given P is to show —Q < —P and then apply modus tollens:

Suppose N\ is neither even nor odd. Then n + 1 is neither even nor odd, son(n + 1) is not necessarily
divisible by 2. Since for every integer m we must have 2 | m(m + 1), 1 is not necessarily an integer, i.e.
it is not the case that ™ must be an integer.

This is known as proof by contrapositive.

A third way to prove Q given P is to show that if one had P but also —Q, then disaster ensues:

Suppose 1\ is neither even nor odd. Then neither n norn+ 1 is divisible by 2, son.(n+ 1) Zs not divisible
by 2. This contradicts the fact that every product of consecutive integers is divisible by 2.

Ifnm is a product of consecutive integers, then "M is divisible by 2?

Indeed: suppose WM is a product of consecutive integers not divisible by 2. Then "W is odd, and this
entails \and ™ are odd. But then odd numbers are at least two apart, contradicting our assumption
that M and m were consecutive.

This is called proof by contradiction.

We will encounter all three methods of proof throughout our study of math.
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UsEe oF THE < SYMBOL

Readers with previous logic experience may be wondering whatever happened to the — or = symbol.

We now take a moment to explain.

DEFINITION 15. A bounded lattice is a 6-tuple (X, A, V, T, L, <)
where Xis a set, \V (the joiz or supremum) and /\ (the meet or infimum)
are functions from X? to X, and T and L are special elements of X.
These objects satisfy the following conditions:
xN\(yAz)=xAy)Az and xV(yVz)=xVy)Vz
xAy=y/Ax and xVy=yVx
xA\(xVy)=x and xV (x Ay) =x.
x AT =x%x and xV.1=x.

We may further define x <y to mean x = x /Ay (or equivalently y = x V' y).

A bounded lattice with a notion of complement —x is called a boolean lattice.

The logic we are introducing can be understood in terms of boolean lattices.
This is why we use X < Y instead of the more traditional X — Y.

We note that V as a lattice admits a satisfying visualization. Consider the number line R, and add two endpoints,
—00 placed to the left of all negative reals and +o00 placed to the right of all positive reals:

—00 —10 —1 0 1 10 +00

the result is R, the extended real number line. We may thus think of

* +ooasa | and —ocoasa L,
* /A as taking the minimum of two extended reals, \ as taking the maximum,

* and negation as rotating the number line 180° about 0.

So R is a/so a bounded lattice, with V a boolean sublattice. Note, however, that “— does not logically complement
elements in R. We will say more about lattices in §1.4.
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LaTTIiCcES OF TRUTH FUNCTIONS

The n-ary truth functions also form a boolean lattice.

Hereisn = 0:

Hereisn = 1:

Hereisn = 2:
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FuncTtioNAL COMPLETENESS

We end this section on propositional logic with an application to electronics.

DEFINITION 1.6. A set of binary truth functions is functionally complete if it generates all of the remaining
binary truth functions.

For example, { —, /\, V }is functionally complete, and by de Morgan’s laws, sois { —, A\ }and{—, V }.
Now, note that

XTX=-=X, (XTY)T(XTY)=XAY, XTX)T(YTY)=XVY
so{ T }is functionally complete!

Similarly, { | }is functionally complete.

CrassiCAL CIRCUITS: NAND AND NOR GATES

Electrical engineers leverage this functional completeness: instead of having to stock AND gates and OR gates and
NOT gates, they can work with NAND gates exclusively.

Here is the circuit for a NAND gate:

Vee

RI

R2
Ao—/\/\/»—@ 1

R3
ao—/\/\m—g a2

This gate is central to electronics design.
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1.2 PREDICATE LoGIC

In this section we develop a formal language of quantified statements with variables which will serve as the basis
for defining set theory, itself the foundation for building the remainder of our mathematical apparatus.

We will work within a universal collection of logical statements, denoted Q). The question of how many elements QO
contains is tricky to answer, since our notions of quantity beyond the finite will come from defining sets rigorously.
At the very least, we may distinguish between two variants of infinite, using the criterion of whether the elements
of a given collection can be arranged in a sequence.

DEFINITION 1.7. If X can be sequenced, we will say X is countable and denote X using the notation
X = (xi)i>0 = (x0, X1, X2, ... ).

All other infinite Y will be designated uncountable and denoted as follows:

Y={y L}LGI

Here, ] is an zndex set, which can be thought of as some uncountable reference collection.

The usual countably infinite sets are:

N the convex cone of natural numbers (nonnegative integers),

N**  the convex cone of positive elements of N,

P the prime elements of N+,
Z the ordered ring of rational integers,
and Q the ordered field of rational numbers (fractions).

The first three sets are clearly sequences, and we will show how to sequence the last two sets later on.

Some common uncountably infinite sets include:

R the ordered field of real numbers,
(—e,€)  the gpen interval of real numbers between —e and €,
[—&,¢e]  the dosed interval of real numbers between —¢ and €,

C the field of complex numbers,

D the open disk of complex numbers of modulus less than 1,

and oD the circle of complex numbers of modulus 1.

For now, we will think of (3 as countable. As we shall see, countability is a fairly tame flavor of infinity.
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PROPOSITIONS AND INFINITY

The assumption that Q is countable is admittedly a mathematical idealization, since once we define real numbers,
we will be able to generate an uncountable number of propositions, such as

The real number x is rational.

Honestly though, mathematics in practice often requires a certain calm flexibility with notions of the infinite.
For example, we will show that the set of all subsets P(X) of a set X is always strictly larger than X, which, if Xis
countable, implies a sequence of sets each infinitely larger than the ones before i,

X, PX), PPX), PPPX),

with nothing but philosophical discomfort to keep us from continuing the sequence. What’s more, beyond-
uncountable sets (such as R®, the set of all functions from R to R) routinely appear in the setting of functional
analysis, which we visit in Chapter 4.

CONTEXT AND THE SYMBOL GROUNDING PROBLEM

There’s another philosophical abyss lurking in the background of propositional logic, this one far more insidious
than the problem of producing really big numbers. Every proposition must be interpreted within a certain context:
for example, the classic proposition

It is raining.

depends heavily on location, time, the number of raindrops coming down (see: sorites paradox), et cetera. But so
far, no one has yet figured out how to define context without falling back on propositions. So the entire
mathematical edifice is, to some degree, floating in midair. Depending on your personal philosophical stance, this
is either irrelevant, devastating, or hilarious.
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SYNTAX OF PREDICATE LoGIC

If you’re still reading, welcome to the club. We now specify what we mean by predicate logic.

TERMS AND PREDICATES

The words in our formal language are known as zerms.

DEFINITION 1.8. By a term we mean either:
* aconstant c, i.c. some fixed object in Q, or
* avariable X, i.c. a symbol representing any object in Q, or

¢ afunctionf: Q™ — Q.

We note that constants are nullary functions, and that the argument of a function could be another function. So
we really should write () = ()¢ for the universe of propositions, and then (), for all the n-ary functions from
0y to Qp. Keep in mind that variables can only refer to objects in )¢ in our formal language.

By an n-ary predicate we mean a function P : Q™ — V. That is, an n-ary predicate takes in 1 propositions and
outputs a truth value. Predicates are the building blocks of formulas, which we discuss next.

ForMULAS AND QUANTIFIERS

The sentences in our formal language are known as formulas.

DEFINITION 1.9. By a formula we mean either:
* an n-ary predicate applied to an n-tuple of terms, or
* anegated formula, or two formulas joined by a binary truth function, or

* VxP(x) or 3xP(x) where x is a variable and P(x) is a formula.

Here are some examples of formulas:

ci, T, Plen,e2) AQ, WxR(x), 3xS(x)V P(cs,ca)

The symbols V “for all” and 3 “there exists” are called guantifiers.

DEFINITION 110. By a quantifer we mean one of two symbols:
* the universal quantifier ¥, where the statement VxP (x) may be read “P(x) for all x,”
* the existential quantifier 3, where the statement 3xP(x) may be read “there exists an x where P(x).”

Many logical malapropisms can be attributed to accidentally swapping quantifiers.
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NEGATING QUANTIFIERS

We record that
—(v"xP(x)) = Ix(=P)(x)  and  —(FyQly)) =Vy(—Q)(y)
The above is basically de Morgan’s laws: think of V as behaving like /\, and 3 as behaving like V.
This captures our intuition about what “for all” and “exists” mean in natural language: if something isn’t true for
everything, it is false for at least one thing; similarly, if there is nothing for which something is true, then for all

things that something just be false.

It’s merely terse notation, but these ideas appear so frequently that the brevity is warranted.

QUANTIFIER CASE STUDY: CAUCHY'’S €-8 LimMIT DEFINITION

Here is an example where the quantifiers really matter. It looks forward a bit, but the example is so important that
we preview it here. It is Cauchy’s e~ definition of a limit: remember it and it will serve you well.

DerFiNITION L. Let f : R — R.
We say that the limit of f as x approaches ¢ is L if
Ve>0 36>0 suchthat (jx—c|<8) < (f(x)—L|<e¢)

and write lim f(x) = L.
X—C

This can be formalized in terms of games (yes, there is a mathematical theory of games): if Player A gives Player B
an €, Player B can then respond with a 8¢, and if Player A then sets €1 = 8¢ and then proposes €7 to Player B,
then Player B produces a corresponding 81 for Player A, and so on.

THE NoN-LoGICAL € SYMBOL
We need one more symbol, this time having to do with sets.

DEFINITION L12. The symbol € denotes elementhood, i.e. X € X denotes the proposition

The set x is an element of X.

Elements of sets are always other sets.

The € symbol was orginally an € (lower case Greek epsilon), but eventually became its own glyph.
Thus in our mathematical ontology we shall have two #ypes: propositions and sets.

There is an entire theory of types, but getting into it now would be a distraction.
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SETS: KEY STRUCTURES

In order to accomodate sets, we won’t be able to use a set as a universe. We need a category.

DEFINITION 1.13. A category € consists of:
* aclass of objects Co,
* for any two objects X, Y a set of arrows C1 (x,y),

* for any three objects a, b, ¢ an associative binary operation
61 (Cl,b) X e] (b) C) — G] (Cl, C)
called composition of arrows,

* for any object x an arrow idy € €7 (x,X).

Category theory is the more modern way to think about mathematical foundations, but it largely serves the subject
of algebra (in particular: algebraic topology, algebraic geometry, and algebraic number theory). Analysis can be
done without category theory, so we do this in the interest of keeping things as simple as is reasonably achievable.

Still, when the temptation is irresistable, a category-flavored insight may appear down the line.

TuE CATEGORY Set OF SETS

Just so that we have a definition on the record, we will say
Set ={x:x =x}

defines the category of sets. This object, when taken alongside the universe of propostions ), may be called the
dlassical universe of mathematical discourse. Classical here means no categories beyond Set.

This definition is a reference to the three classical laws of thought:

* Excluded middle: every proposition is either true or false.
* Noncontradiction: 7o proposition is both true and false.

* Identity: every object is equal to itself.

Note that excluded middle and noncontradiction are encoded in our definition of proposition.

The law of identity as used above is formal instead of informal, since we define a rigorous notion of what it means
for two sets to be equal in the next section. It doesn’t formally extend to objects that aren’t sets, since we have no
specification of the = symbol for arbitrary objects.

On a related note, the = symbol being used to denote the biconditional earlier doesn’t formally count as a notion
of “proposition equality” since it merely forms a new proposition from two given propositions. Instead we express

that two propositions P and Q are logically equivalent by first establishing P = Q and then Q - P.
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TuEe Voip

If we can characterize anything with the assumption x = X,

we ought to be able to characterize nothing at all with the assumption x # x.

DEFINITION r.14. We call
@ ={x:x #x}

the empty set.

The empty set is sometimes an element of another set, but no set is an element of the empty set:
F(—(x € @)).

There is exactly one function on @, the empty function which sends nothing nowhere.

THE NATURAL NUMBERS AND SUCCESSOR MAP

The binary union
xUy

of two sets x and Y consists of all z such that either z € x or z € y. It is a specific case of the arbitrary union,
which we assert to exist in §1.3.

DEFINITION 115 (von Neumann). We define the successor of any set X to be
Xt =Xu{X}.

In particular, the set consisting of & and all sets obtained via applying the successor to & a finite number of
times is called the natural numbers. Concretely, the first few natural numbers are denoted

0=9

1=ott ={0}

2= (") " ={0,1},

3= (@) ") ={0,1,2},

4 = (((®++)++)++)++ :{0,1)2)3}

When restricted to the natural numbers, the successor map becomes a unary operation ()T :N—=N.

A sequence taking values in a set X is a function from N to X.
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INDUCTION AND WELL-ORDERING

As a consequence of asserting the existence of N, we have the following schema (one axiom per proposition):

Ax1oMm 116 (Induction schema). If P(n) satisfies
P(0) and vn e N(P(n) < P(n*th)),

then¥n € N, P(n).

In plain English, this is saying that if one has a property that holds at zero, and one can show that the property
holding at 1 implies the property holding at ntT, then the property holds for every natural number. We may
restructure the axiom so that it is about sets instead of propositions, which is what we really want:

AxioMm 17 (Set Induction). If a subset X C N satisfies 0 € X and
meX) < (nTF eX)

foralln € N, then X = N.

These are logically equivalent to the following:

Axiom 1.18 (Well-Ordering Principle). Every nonempty subset X C N bas a least element.

Proo¥F. Let X be a subset of N satisfying 0 € X and
meX) < nt eX).

We proceed by contradiction: suppose X # N. Then there is a nonnegative integer not in X, i.e. N'\ X is nonempty.
Then N \ X has a least element .. Note that . # 0, since 0 € X. Thus, n > 0, and since 1 is the least element
notin X, n — 1 must be in X. But by assumption, (n — 1)** = n € X, contradicting our assumption that
1 ¢ X. Thus proves that the well-ordering principle implies the principle of induction.

Conversely, consider a nonempty subset Y C N. If Y has just one element, then that element is the least element
of Y. Now suppose the well ordering principle is true for all subsets of N with n elements, and suppose Y has
n*t* elements. Takey € Y and let z be the least element of Y \ y. Then min({y, z}) is the least element of Y.
This proves that the principle of induction implies the well-ordering princple. [ |

Confusingly, there is also a Well-Ordering Theorem, which is a statement equivalent to the Axiom of Choice (i.e.
one may deduce the Well-Ordering Theorem from the Axiom of Choice and also deduce the Axiom of Choice
from the Well-Ordering Theorem). The Well-Ordering Theorem states that 7y set admits a well-ordering akin to
the well-ordering given by € on N.

In particular, R can in theory be well-ordered, but the resulting well-order is so pathological that asserting its
existence or non-existence very quickly leads to statements independent of the set axioms!
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INpucTION ExaMPLE: TROMINO TILING

A trominoisa2 x 2 square of unit (i.e. 1 X 1) squares, with a corner unit square missing:

PROPOSITION L.19. Every 2™ X 2™ grid of squares missing one unit square can be tiled with trominos.

Proor. The claim holds for n = 1. So assume the claim holds forn = m — 1.

Divide a2™ x 2™ square with a unit square missing into four 2m—1 5 pm—l quadrants. Place a tromino in the
center so that the missing square of the tromino aligns with the quadrant with the deleted square.

By our inductive hypothesis, each of these quadrants can be tiled with trominos, so the claim holds forn = m.
By induction, the claim then holds for all natural numbers. [ |
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INDUCTION EXAMPLE: A FIBONACCI IDENTITY

Though the problem itself is fairly well known, the author initially encountered the solution in Loren C. Larson’s
book Problem Solving Through Problems. There, one can find all the induction practice one will ever need.

Let F;, denote the nth Fibonacci number, defined so that Fg = F; = Tand F,, 12 = Fr1 + Fi.
ProrositioNt.20. F2 ; + F24 = Fony.

Remark. A hint that this is going to be trickier than expected is that Fon 43 = Fani2 + Fany1, and there is
no logical entry point for Fon 2 based on how the problem is currently stated. The technique is thus to simply
encode Fr, 42 into a separate identity, prove that, and then prove the original claim. Watch what happens, though.

PrOOF. Let’s play around with the identities before proceeding formally.

Following the above, we need to show, given
(I-I) Fix + Fi+] = F2111+1 )

we need to show

(1.2) Fi +Fais =Fomys = Fams1 + Famoo.

Subtract (1.2) from (r.1) to obtain:

(13) Fomiz =Fao —Fa =F2 1 + 2FmFingr-

If we can show (r.1) implies (1.3) via induction, then we would also get that (r.1) implies (1.2) via induction, which
is our claim. But we derived (1.3) from (1.2), and a bit of experimentation confirms that the two indentities are
relentlessly intertwined.

The solution is to stipulate that
P(n) represents the claim F2 + Fiﬂ =Font1
Qmn) represents the claim 2P Fn1 +Faiq = Fango
We already know that (P(m) A Q(m)) < P(m + 1). Now note that
2 1Fmia + Py = 2P (Fon 4 Frnet) + P
=2F2 1+ 2FmFmpr + Fos
=2(Fom+1 — Fa) + 2FmFmet + Fop)
= 2Fomir + P —Fh
=Fams1 + Faiq + Fams2 — 2FmFmai
= F2111+3o + F1211+1 - 2F'mF‘rn—b—l

=Fom+3 + Fomy2 = Fomga.

This shows that P(m) A Q(m) < Q(m + 1). The base cases aren’t hard to verify.

Thus the induction we needed all along was neither P(n) nor Q(n) but P(n) A Q(n), which when proven via
induction (as we essentially just did) gives both P(n) and Q(n) as corollaries. [ |

Most instances of induction aren’t this intricate. But some are.
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13 THEZFC Axioms

It is now time to define sets properly. Having thoroughly prepared the reader, we deliver the axioms in pure
symbols. The content of this chapter draws heavily from a similar treatment in Sez Theory by Thomas Jech.

The theory ZF has six axioms and two axiom schemata:

¢ Extent * Induction

* Pairing * Separation Schema

* Power set * Replacement Schema
¢ Union * Foundation

In addition, we have the Axiom of Choice (C). Collectively, the axioms assert which sets can and cannot exist.

The axioms are the result of hardening the intuitive “collection of elements with no repeats” proto-definition into
a robust specification which most mathematicians at least implicitly rely on.

Equipped with the appropriate definitions, one can prove from the axioms virtually any mathematical result. Of
course, this doesn’t usually happen; in practice one relies on an intuitive understanding of sets gained through
careful study of their properties. Contrary to what some may think: to bake an apple pie, one does oz first need
to invent the universe. References exist. Other mathematicians exist. No one works in a vacuum.

On the other hand, there is something oddly satisfying about seeing the exact criteria that specify what a set is.
It is kind of like reading through the ingredients on an energy drink, or knowing that one could sit down and
scan through the entire terms and conditions of an end user license agreement. Knowing that something has been
scrutinized to down to atoms can be a fascinating reward of its own. At the very least, a great many mathematicians
seem to think so.

SETS ARE DETERMINED BY THEIR ELEMENTS

Two sets are equal exactly when they have the same elements:

AxtoM 1.21 (Extent).
(x=y)=Vz((zex) = (z € y)).

As we shall see, a sez-isomorphism (or bijection) is essentially a bidirectional function that tells us how to obtain
any element of the first set from the second set and vice versa. Whenever we assert the equivalence of two sets via
bijection, we are implicitly using the Axiom of Extent.
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Ex1STENCE OF UNORDERED PAIRS

For any pair of elements there exists a set containing exactly those elements:

Ax10M 1.22 (Pairing).
YavbIxVe((x € ¢) < ((x = a) V (x = b))).

The unordered pair defined above is unique by extensionality. We write {a, b} for any sets a and b. In the case
a = b, we may write {a}, the singleton containing just a. Note that a # {a}. Note also that{a, b} = {b, a}.

EX1STENCE OF POWER SETS

We denote subsets by writingy C x to mean
Vz((z € y) < (z € X)),
which reads “anything in y must also be in x.”

There exists a set of all subsets of any set X, and by asserting the existence of it, we get all the subsets at once.

Ax1oM 1.23 (Power set).
VxIpvy((y € p) = (y S ).

We call this set the power set of x and denote it P(x).

ExISTENCE OF UNIONS

There exists for every set X a sety = | J x for which z € Y exactly when z is an element of some element of x.

The set Y is called the union of x.

Ax1oM 1.24 (Union).
VxIyvz((z € y) = Iw(z € w € x))

In the case of X = {X1, ..., X } we write

Ux:Oxi:x1U~~an.
i=1

For the dual concept (intersection of a set), see the separation schema.
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EXISTENCE OF INDUCTIVE SETS

There exists a set containing the empty set that is stable under the successor function:

AxrtoM 1.25 (Induction).
Is(z e s AVx((x €s) < (xTT €5))).

We call such a set an inductive set. The smallest inductive set (i.e. the intersection of all the inductive sets) is N.
In particular, this axiom is the only thing that guarantees that any sets exist at all.

That is, at least one set exists because N exists, and every set in the universe of sets is thus essentially either a subset
of N or a subset of one of its power sets. Look up “von Neumann hierarchy” for more precise details on this.

The set N is also sometimes denoted w, for “first infinite ordinal.” Ordinals and their arithmetic are just barely
beyond the scope of this book; the interested reader is enouraged to explore further on their own.

DEFINIABLE SUBCLASSES OF SETS ARE SETS
The intersection of a set with a class forms another set:

AXI10M 1.26 (Separation schema). For ¢(z, p) a formula, we have

VxvpIyvz((z € y) = (z € x A db(z,p))).

From separation, we get the existence of the empty set, and also the existence of intersections and complements.

3o, ﬂx:{u:Vy(ueyex)}, x\y={z:(zex)N\(z&y)}
We also get the existence of subsets, but in a controlled way: one can only create a subset from an existing set.

This is different from the comprebension schema which falsely states that one can take subsets of any class.

37



SET-IMAGES ARE SETS

The image of function whose domain is a set must be a set:

AxioM 1.27 (Replacement schema). For ¢(x, Y, p) a formula, we bave

Yxvyvz(d(x, Yy, p) A dlx,z,p) < (y =z)) < VzIwvy(y e w = (Ix € 2)d(x,y,p)).

ALL SETS ARE WELL FOUNDED

There are no infinite membership chains and no cyclic membership loops:

every chain of elementhood has an €-minimal element.

Ax1toM 1.28 (Foundation).
Vs((s Z@) < (Ix €s)(sNx # )

In particular, X € x never happens.
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CoONSTRUCTION: CARTESIAN PRODUCTS

Sometimes there is some confusion as to how functions, ordered pairs, and Cartesian products are defined, since
they’re usually defined in terms of each other. That is, arbitrary Cartesian products are sets of functions, but
functions are defined to be collections of ordered pairs and hence subsets of a binary Cartesian product. Here we

»

offer a possible way to clarify things: the key is to distinguish between “Kuratowski ordered pair” and “2-tuple.

Binary ProTO-PRODUCTS

First, we define a binary proto-product to be a collection of Kuratowski ordered pairs, whose first element is drawn
from the first set of the proto-product and whose second element is drawn from the second set.

DEFINITION 1.29. Let X and Y be sets. Define the binary proto-product

(X, V) = {0 (o ul ix € X, y € Y}

This exists as a subset of P(P(X U Y)).

The prefix “proto-” suggests these objects are essentially temporary definitions: proto-products will be replaced by
Cartesian products.

SPACES oF PROTO-MAPS

We then use the proto-product to define proto-maps, which are kind of like functions, except built from proto-
products instead of Cartesian products.

DEFINITION 1.30. Let X and Y be sets. Define the space of proto-maps
(V) ={fc((X,Y)):Vxe Xy eY suchthat {{x},{x,y}} € f}.

This exists as a subset of P(((X, Y))).

We define proto-maps so that Cartesian products will have a function-like object that may be used to specify
elements of the product.
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CARTESIAN PRODUCTS

Cartesian products are then collections of proto-maps from some index set.

DEFINITION 1.31. Let {X }, ey be a collection of indexed sets with index set ],
which exists as an element of ((J; P (U, X)),
i.e. the collection is a proto-map whose Kuratowski ordered pairs look like {{t}, {t, X, }}.

Define the arbitrary Cartesian product to be a subset of the proto-map space

D ((ryx.)

such that the elements are proto-maps ¢ : | — |J, X,

whose Kuratowski ordered pairs look like {{t}, {t, x }} where x, € X,.
In particular, n = {0,...,n — 1} € N may serve as an index set.

DEFINITION 1.32. The finite Cartesian product is then

n n
X]X"'XXnZHXiC<<Tl;UXi>>.
i=1 i=1

Elements of a finite Cartesian product with n factors are called n—tuples.

For example,
3

X]XX2XX3:HX1

i=1

has 3-tuples as elements, where each 3-tuple (x1, X2, x3) is a function

3
$:3— Uxi

i=1

such that d)(()) =x1 € Xy, d)(]) =x2 € Xz, d)(Z) =x3 € X3.
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RELATIONS ARE SUBSETS OF CARTESIAN PRODUCTS

DEFINITION 1.33. Define an n-ary relation to be any subset of [ [1-_; Xi.

The three major kinds of binary relations are orderings, equivalence relations, and functions.

Tue AxioMm ofF CHOICE

Given any collection of sets, each containing at least one element,
it is possible to construct a new set by choosing one element from each set.

Ax1oM 1.34 (Choice). Every family of nonempty sets bas a choice function.
There are several equivalent formulations, one of which is:

Ax1toM 1.35 (Weak Tychonoft). An arbitrary Cartesian product of nonempty sets is itself nonempty.

THE BANACH-TARSKI PHENOMENON

"Gy oY

Choice can lead to bizarre consequences, one of which is the Banach-Tarski phenomenon (pictured above):

Given a solid ball in 3-space, there is a decomposition of that ball into finitely many disjoint subsets such
that those subsets can then be reassembled to form two identical copies of the original ball.

The construction involves non-measurable sets, which we will cover in Chapter 10.
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PraToNisMm, FORMALISM, INTUITIONISM

A nontrivial number of mathematicians do not accept the axiom of choice as valid. Then again, the same could
be said of excluded middle. There is a philosphical cost to doing mathematics, in that one must include in one’s
assumptions hypotheses which lead to wild conclusions. What can we make, then, of a formal system that deduces
results such as the Banach-Tarski phenomenon?

There are several approaches. Here are three popular ones:

Platonism Mathematics exists in a realm independent from physical reality, i.e. independent of the human minds
which record it. Banach-Tarski is then a real fact which happens to disagree with our preconceived physical
intuition.

Formalism Mathematics is but a formal game played with symbols, and Banach-Tarski an amusing yet valid
result, provided one assumes choice.

Intuitionism Mathematics ought to be formed from constructed objects instead of abstract characterizations.
Intuitionists reject choice, and so Banach-Tarski is moot to them.

Don’t worry if you do not feel committed to any particular stance yet.
Sometimes the best answer one can give to a question is an honest “I don’t know.”
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1.4 RELATION AND NUMBER

In this section we cover the major kinds of binary relations and the standard number systems.

HoMoGENEOUS BINARY RELATIONS

DEFINITION 1.36. A relation R C X x Y is homogeneous it X =Y.

Three examples of homogeneous relations x1 Rx; are:

* The trivial relation R = @&, which holds for no (x1,x2) € X?;
o The universal relation R = X2, which holds for any (x1,%x2) € XZ;

* The identity relation R = id, which holds when x7 = x;.

The following illustration may be helpful.

H

trivial universal identity

Preorders are the most general type of ordered set.

A partial order are special kind of preorder; a total order is a special kind of partial order.
PREORDERED SETS

DEFINITION 1.37. A homogeneous relation R is:
* reflexive whenid C R
* transitive when (xRy A yRz) < xRz forallx,y,z € X.
A homogeneous relation that is both reflexive and transitive is called a preorder.
* A preorder is symmetric if xRy = yRx;
a symmetric preorder is also known as an equivalence relation.
* A preorder is antisymmetric if ((xRy AyYRx) < (x =y));

an antisymmetric preorder is also known as a partial order.
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PARTIALLY ORDERED SETS

DEFINITION 1.38. A set equipped with a partial order is called a poset.

Posets are the simplest environment in which one can reason about boundedness.

DEFINITION 1.39. Let (X, <) beaposet, S C X.

We say m € Xis alower bound of S We say M € Xis an upper bound of S
(and that S is bounded below) (and that S is bounded above)
ifm < sforeverys € S. if s < Mforeverys € S.

If S is bounded both below and above, then we say S is bounded.

We say Ml € X is the meet or least upper bound We say m € Xis the join or greatest lower bound
or supremum of S (denoted \/ S or sup S) or infimum of S (denoted A S orinf S)

if Ml is an upper bound of S if mis a lower bound of S

and if for any upper bound M’ of S, and if for any lower bound m’ of S,

we have M < M. we have m’ < m.

A lattice is a special kind of poset.

DEFINITION 1.40. A lattice is a poset stable under finite meets and joins;

a lattice is complete when stable under arbitary meets and joins.

We move from poset to poset via monotone (order preserving) and antitone (order reversing) maps.

DEFINITION 141 Let (X, <x) and (Y, <v) be partially ordered sets. A function
f:X—>Y

is monotone if for all X,y € X we have

(x <xy) < (f(x) <y f(y)),

and antitone if for all X, y € X we have

(x <xy) < (fly) <v fx)).

Note that the composition of an even number of antitone maps forms a monotone map.
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TotaLLY ORDERED SETS

The real numbers R form a totally ordered lattice.

Note, however, that even though R is complete in other senses (i.e. as a metric space), R is not lattice-complete
becuase the sequence (s1); C R given by s; = i has no supremum in R.

Adding in a global upper bound +o00 := T and a global lower bound —oo := L fixes this problem.

As aresult, the extended real numbers
R = U {—o0, R, +00}

form a complete totally ordered bounded lattice.

DEFINITION 1.42. An interval is a set of one of the following forms:
a,a)=xeR:a<x<al=9g

a,a):=xeR:a<<x<al=9

( {
(aqyal:={xeR:a<x<a}l=9
[ {
[a,al . ={x eR:a<x<a}={a}

b)=xeR:a<x<b}
bl:={x eR:a<x<Db}
[a,b):={x eR:a<x<Db}
bl:={xeR:a<x<b}

where a < b € R. The latter four intervals contain at least two points and are thus called nondegenerate.

Intervals where neither a nor b is either +00 or —o0 are called bounded.

In our new interval notation, we have:
R = (—o00,00) and R = [—00, +00].
Using the smooth maps
f(x) = Ag arctan x, £ (y) =tan (y/Ae), Ae = ¢/(m/2) € (0, 00)
and interpreting the asympotic values in the obvious way, we get the open and closed bounded images
f.(R) = (—¢,¢) and  f, (R) =[—¢,¢€l.
This is particularly nice, as it implies the parametrized curves
vi(—g ) — Q, Y:l—¢ee = Q
have images either diffeomorphic to R (in the open case) or homeomorphic to R (in the closed case).

For example, one can think of y as the world-line of a particle traveling through a model of space-time.
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EQUIVALENCE RELATIONS

First let’s revisit what it means for an subset & € X x X to be an equivalence relation on X:

DEFINITION 1.43. An equivalence relation is a relation on X that is:
* Reflexive: o(x,x) forallx € X
* Symmetric: 0(x,x’) = o(x’,x) forall x,x" € X
* Transitive: (0(x,x') A o(x/,x”)) < o(x,x”) forallx,x’,x" € X

where 0(x,x’) is shorthand for the proposition (x,x’) € o.

PROPOSITION 1.44. The set Lx of all equivalence relations on X forms a complete lattice.

Proo¥F. Let’s identify the lattice components.

The partial order is:

(01 <o02)

( o1(x,x") < oa(x,x") forall (x,x') € X x X)
The meet (which always exists) is:
Ao =

L L

The join (which always exists) is:
+

Vo= (Ue.

L

where R is the intersection of all the transitive relations containing R as a subset (i.e. the zransitive closure).

This lattice has a L (identity) and a T (universal relation), making it a bounded complete lattice. |

For a concrete example, take X = R®, and define a series of equivalence relations o; where 03 (f, g) exactly when
the first i terms of their Taylor series around x = 0 agree.

Here’s a taste of what these relations are like:
o1(exp(x) —1,x),  0a(sinx,x),  o3(cosx,1+x%/2)
These relations form a totally ordered sublattice (or chain):
0op<o1<0<---<1
where two functions f, g : R — R are T-equivalent exactly when they agree on some open neighborhood of 0.

Note that while T is a strict upper bound of the o7 relations, :t is not a supremum! This is a fancy way of encoding
the observation that two real functions can have the same Taylor series about a point without coinciding.
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FUNCTIONS AND INVERTIBILITY

Now we shift focus to relations R C X x Y where X does not necessarily equal Y.

DEFINITION 1.45. Let R € X x Y be a relation. We say Ris
* left-total if for all x € X thereis somey € Y such that xRy
* right-total if for ally € Y there is some x € X such that xRy
* left-uniqueifforally € Y, (xRy Ax'Ry) < (x =x’)
* right-unigue if forall x € X, (xRy AxRy’) < (y =vy’)
We then say that R is
* apartial function if R is right-unique but not necessarily left-total,
* amaultivalued function if R is left-total but not necessarily right-unique,
* a(well-defined) function if R is both left-total and right-unique.

Note that this definition of function is simply a more verbose restating of the definition previously given.

We can also use the above four criteria to define when a function can be undone.

DEFINITION 1.46. If f : X — Y is a function, then we say that f is
* injective or left-invertible if f is also left-unique,
* surjective or right-invertible if f is also right-total,

* bijective or invertible if f is also both left-unique and right-total.

Related to the adjectives above are the following nouns:

* injective functions are also called znjections,
* surjective functions are also called surjections,

* bijective functions are also called bzjections, or in certain cases sez-isomorphisms.

DEFINITION 1.47 (More on left-invertibility and right-invertibility).
The identity map on aset Sisthemap 1s : S — Sgivenby s — s.
Left-inverses (i.e. functions £ : Y — Xsuch that { o f = 1x) are also called retractions.

Right-inverses (i.e. functions T : Y — X such that f o v = 1y) are also called sections.
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THE IMAGE AND PREIMAGE MAPS

One can send subsets forwards and backwards through functions.

DEFINITION 1.48. Let f : X — Y be a function. There are functions
f. : P(X) = P(Y) and *:P(Y) — P(X)
called image and preimage, respectively given by

f«(A) ={y € Y:3Ix € Asuchthat f(x) =y} and f*(B)={x € X:f(x) € B}.

Note that image respects the order of composition whereas preimage reverses the order of composition:
(gof). =gs«of. and (gof)*=f"og".

In slightly more ornate language, we say image is covariant and preimage is contravariant.

ProrosiTiON1.49. Let T : X = YwithS CZ C Xand T C W C Y. Then:

2. T*(T) C *(W). 5. If f is injective then £*(f(Z)) C Z
3. L C1*(f.(2)). 6. If f is surjective then W C £, (f*(W)).

Proor. We’ll show all of these step by step so that the reader can get an idea of how these work. All of them are

easy once one understands the general pattern.

. Lets € f.(S). Then by definition of image, there is some s’ € S such that f(s’) = s. Buts’ € Zsince
S C Z. By definition of image, there is some s’ € Z such that f(s’) = s,s0s € f,(Z).

. Lett € f*(T). Then by definition of preimage, f(t) € T. But f(t) € W since T C W. By definition of
preimage, t € f*(W).

. Letz € Z. Then f(z) € f.(Z) by definition of image, and z € *(f,(Z)) by definition of preimage.

. Letw € £, (f*(W)). Then by definition of image, there is some w’ € f*(W) such that f(w') = w, so
w € W by definition of preimage.

. Let f be injective and let z € f*(f,(Z)). Then by definition of preimage, f(z) € f,(Z). By definition of
image, there is some 2’ € Z such that f(z) = f(z’). But by injectivity of f, we must havez = z/,s0z € Z.

. Let f be surjective and letw € W. Then w € Y since W C Y. By surjectivity of f, there is some w’ € X
such that f(w’) = w. By definition of preimage, w’ € f*(W). By definition of image, w € f.(f*(W)).

For practice, it might be helpful to do these on your own without looking at this page. [ |
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FuNcTiONS AND SET OPERATIONS

Here’s how image and preimage behave with respect to union, intersection, and complement:

PROPOSITION L.50. Let f be a function. Then

f* UXL = Uf*(XL) f* UYL = Uf*(YL)

eJ eJ Lej e]
fo{ (VX ) SOV L)Y ) = ()
eJ Lej eJ eJ
(X)) C (f.(X))° (Y€)= (£*(Y))°
with equality in the intersection image case when f is injective,
and equality in the complement image case when f is surjective.
Check these if you feel the need to do so. The proofs are very similar to the proof of the previous proposition,
with the only novelty being that one must invoke the definitions of intersection, union, and complement.

Note that by the above result, preimages are “nicer” than images. A more precise way of stating this is that the
preimage map forms a homomorphism of lattices (i.e. preserves all of the lattice structure), whereas the image map
does not form a homomorphism of lattices due to its failure to preserve intersections.

MoRre oN FuncTIONS AND EQUIVALENCE RELATIONS

Equivalance relations often organize sets in the following way.

DEFINITION 1.51. Let X be a set, and 0 C X x X an equivalence relation.
The quotient set X/ 0 is then the partition whose parts are equivalence classes of o,

i.e. collections of elements of X which are all related to each other via o.

The equivalence classes of a quotient are pairwise disjoint, and their union is all of X. We will not prove this next
proposition, since it should be clear by now what’s going on: the isomorphism is inevitably ¢ ([x]¢) = f(x).
PROPOSITION 152 (Canonical Decomposition in Set).
Every function f : X — Y defines an equivalence relation ~¢ where x ~¢ X' exactly when f(x) = f(x').
Furthermore, we have a decomposition
X —T X/mp —2 £,(X) — Y

where T is a surjection, § is a bijection, and \ is an injection.
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CANTOR’S THEOREM

THEOREM 1.53. Let X be a set. Then |P(X)] > |X|.

ProoOF. We will show thatany map f : X — P(X) cannot be surjective.

Suppose otherwise, and let Y = {x € X : x ¢ f(x)}. Then there exists & € X such that f(£) = Y. But by

construction, & € Yifand onlyif & ¢ f(&) =Y. This is a contradiction, so f cannot be surjective.
On the other hand, g : X — P(X) given by g(x) = {x} is injective, so

P(X)| > X
as desired. u

THE SCHRODER-BERNSTEIN THEOREM

Here we prove that two opposing injections between two sets is enough to establish a bijection between the sets.
As we will see, this is, at its core, a result about fixed points of monotone functions on complete lattices.

THEOREM 1.54 (Knaster-Tarski). Let L be a complete lattice and  : L — L a monotone function. Then

oc:\/{xel_:ng(x)}

is a_fixed point of . Further, & is the greatest fixed point of 1.

Proor. LetH = {x € L: x < f(x)}. Forallx € Hwehave x < o, sox < f(x) < f(). Thus f(c) is
an upper bound of H, so that & < f(«). By monotonicity of f we have f(or) < f(f()). So f(x) € H, ie.
f(x) < «. So ecis a fixed point of . IFf(3) = 3 then B € Handso B < «. [ |

COROLLARY 155 (Banach’s Decomposition). Let X and Y be sets withf : X — Y and g : Y — X. Then there
exist disjoint subsets X1 and X3 of X and Y1 and Y5 of Y such thar f(X1) = Y1, g(Y2) = X2, X =X U X2
andY = Y71 U Y,

ProoF. Thekey observation is that P (X) and P(Y) form complete lattices. Foranyset S, let s : P(S) — P(S)
denote complement, i.e. s (T) = S \ T. Then define

@:P(X) = P(X) via S+ axogsoayof(S).

Since ¢ is the composition of two monotone functions and two antitone functions, it is itself monotone. Apply
Knaster-Tarski to obtain a fixed point. |

THEOREM 1.56 (Schroder-Bernstein). Let X and Y be sets and suppose there exist injective maps £ : X — Y and
g:Y = X. Then there is a bijective maph : X — Y.

ProoF. Let fand g as in the Banach decomposition theorem be injective. Then we may set
h:X—=Y
to be defined as f on A and g~ " on X'\ A. This completes the proof. |
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ENUMERATING Z AND Q

We now discuss bijections from the naturals to the integers and rationals (and why the reals are different).

One way to enumerate the integers is to note that every integer can be written as a sum of powers of —2 in a
unique way. This is sometimes called negative binary.

For example, =1 = 11_ and 8 = 11000_,.
So we can get an enumeration of the integers by simply counting in base —2.

Here are the first few terms of that enumeration:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
my 0 1 -2 =1 4 5 2 3 -8 -7 =10 =9 -4

Note how the enumeration alternates between 1 positive number, then 2 negative numbers, then 4 positive
numbers, and so on. This gives us a bijection f : N — Z.

One way to enumerate the rationals is to use our bijection from the previous enumeration combined with the
fundamental theorem of arithmetic: send n to (1), then map all of the exponents e; in the prime factorization
of f(n) to f(ey).

Here are the first few terms of that enumeration:

n 0 1 2 3 4 5 6 7 & 9 10 11 12
m, o0 1 -2 -1 1 5 2 3 -3 -7 -10 -

This gives us a bijection g : N — Q.

CANTOR’S DIAGONAL ARGUMENT

We already know the reals are impossible to enumerate due to Cantor’s theorem, but there’s a classic argument
here that’s worth getting into. Consider the real numbers between 0 and 1 represented as binary strings, and
suppose we had an enumeration:

0) 0.01010101101101011011010101010100101101011011. ..
1) 0.00001101011111010001011010110110100101001010. . .
2) 0.01101010011101011000100010101110110010010101. ..
3) 0.10010101011110101110110101010011010100100100. . .
4) 0.11110100101010100101010100111101010101001010. . .
5) 0.00000000000000000111010101010101011010101010. . .

Then, simply by flipping the nth bit (to the right of the decimal point) of the n — 1th number, we obtain
w) 0.110011011101001001010001010101010100100100110. ..

which is a number not on our list. This is Cantor’s diagonal argument.
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NUMBER SYSTEMS: ALGEBRA

In this subsection, we analyze the algebraic structure of Z and Q, temporarily ignoring the order structure.
RinGs, DoMmAINs, AND FIELDS

DEFINITION 1.57. A ring is an ordered pair ((R, +,0), -) where:
1. The first element, an ordered triple (R, +, 0), forms an abelian group:

a) a+b=Db+aforalla,b €R

b) (a+b)+c=a+ (b+c)foralla,b,c €R

c) a+0=aforalla eR

d) Forevery a € R thereisaunique —a € Rsuchthata+ (—a) =0

2. The second element is a binary operation - : R x R — Rgiven by -(a, b) = ab satisfying:

a) (ab)c = a(bc)
b) (a+b)(c+d) =ac+ ad+bc+bd

Rings are very general objects, so we qualify them further in order to keep sane:

DEFINITION 1.58. Some miscellaneous ring terms:
* A unital ring is a triple ((R, +,0), -, 1) where ((R, +,0), -) forms a ring
and where 1 € Rissuch thatal = a = laforalla € R.
* Aring ((R,+,0),-) is commutative if ab = ba foralla,b € R.
* The zero ring ((R,+,0), -, 1) is a commutative unital ring where R = {0} (thus 1 = 0)
and where the operations + and - are defined such that 0 + 0 = 0 and 00 = 0.

* Aring ((R,+,0),-) is said to have the cancellation property if
((a £0) A (ab = ac)) < (b=c)
foralla,b,c € R.
* A nonzero commutative unital ring ((R, 4+, 0), -, 1) with the cancellation property is called 2 domain.
* The unit group of a unital ring ((R, +, 0), -, 1) is the triple (R, -, 1)
where R* C Ris the subset of elements in R with a multiplicative inverse.

* A domain for which R* = R\ {0} is called a field.

Notably, the integers Z form a domain and the rationals Q form a field.
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As one might predict, rings form a subcategory of Set, which we’ll call Ring;
similarly, fields form a subcategory of Ring, which we’ll call Field.

The arrows in Ring are maps that preserve both the additive group structure and the ring multiplication:

DEFINITION 1.59. Let R and S be rings.
A ring homomorphism is a function ¢ : R — S such that:

@(ab+cd) = @(a)p(b) + @(c)e(d).
If, furthermore, R and S are both unital, we also require @(1g) = 1s.

A ring isomorphism is a bijective ring homomorphism.

Arrows in Field don’t have a stricter definition, but nonetheless have stricter structure. For example, every field
homomorphism ¢ : K — L is znjective, so that we usually think of L as an extension of K and write K C L.

DEFINITION 1.60. The field of fractions of a domain R is the quotient set
Frac(R) := (R x R\ {O})/ ~

where (a,b) ~ (c, d) exactly when ac = bd. As the name might suggest, this forms a field.
The archetypal example is of course Q = Frac(Z).
IDEALS OF A RING

DEFINITION 1.61. An ideal I of a ring R is a subset of R closed under I-addition and R—-multiplication.
* Note that {0} forms an ideal, denoted (0).
* Similarly, R forms an ideal, denoted (1).

* Ideals are used to form quotient rings via the equivalence relation

(a~b)=a—-bel

* Wesay Lis primeif (abeI) < (aeIVbel)forala,beR
— The quotient of a ring by a prime ideal is an domain.
. Wesaylismaximalif(l CXC R) < (X =] A X= R) for any ideal X of R.

— The quotient of a ring by a maximal ideal is a field.
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Some examples and observations:

* For Z, the maximal ideals are (p) for all primes p € Z, and the prime ideals are the maximal ideals plus (0).

For a field (i.e. for Q), the only maximal/prime ideal is (0).

An example of 2 noncommutative ring is the set of 1 X 1 matrices Maty (R) with entries in a ring R.
The unit group of Maty, (R) is denoted GL(n, R).

* Note that noncommutative rings have left-ideals and right-ideals, something we probably won’t explore
further (as this gets very complicated very quickly). Also note that R can itself be a matrix ring; we may
explore this later.

Given an ordered field T, the set of all Cauchy sequences k(I") forms an ordered ring. The set of all Cauchy
sequences tending to zero forms a maximal ideal mo, so that k(I") /m forms a field. We give more details
on this in the next subsection.

* In particular, the real numbers as an algebraic structure may be defined as R := «(Q)/mo.

* An example of a nonzero commutative unital ring without the cancellation property is C*° (R ),
the ring of smooth functions f : R — R.

Indeed, consider the smooth functions:

) = {exp(—]/x) x>0 ad gh) = {exp(]/x) x <0

0 otherwise 0 otherwise

Note that f # 0and g # 0, yet fg = 0.

We will revisit the ring C*°(R) in the future when we study calculus and differential equations.
PoryNoMIaL RINGs

DEFINITION 1.62. The center of a ring R, denoted Z(R), is the largest commutative subring of R.

An R—algebra is a pair (A, @) where A isaringand @ : R — Z(A) is a ring homomorphism.

The archetypal example of a R-algebra is the ring of polynomials in one variable with coefficients in R,
denoted R[£]. We define R[§, 1] := (R[E])M]. If & is a domain, so is R[€]. However, when K is a field, the

polynomial ring K[£] is only a field in the most trivial circumstances.

DEFINITION 1.63. The complex numbers can be formed via the quotient

RE
G = 7(5,2-‘-1)'

Since (&2 + 1) is maximal in R[&), this forms a field.
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NUMBER SYSTEMS: ORDER

We now reintroduce the order structure onto Z (an ordered domain) and Q (an ordered field).

DEFINITION 1.64. An ordered ring is a 6-tuple (F, +, -, 0, 1, <) such that:
* (F,+,+,0,1) forms a nonzero commutative unital ring
e forallx € F,x £ x
e forallx,y,z € Fifx <yandy < zthenx < z

e forall x,y € F, one of the following hold:
x <y, y < X, X =y
e forallx,y,z € Fifx <ythenx+z<y+z

» forallx,y,z € Fifx <yand0 < zthenx-z<y-z

That s, an ordered ring is a set in which one can add, subtract, multiply, and compare elements.

An ordered field is an ordered ring in which one can divide by nonzero elements.

The elements of an ordered ring can be divided into positive, negative, and 0.

This is enough to have an absolute value.

DEFINITION 1.65. Let X be an ordered ring.

If v : X = Xis such that:
e forallx € X,v(x) >0
e forallx € X, (v(x) =0) = (x =0)
* forallx,y € X, v(xy) = v(x)v(y)
* forallx,y € X, v(x +y) < v(x) +v(y)

then v is called an absolute value.

ORDERED FIELDS: CONVEX CONES

DEFINITION 1.66. Let I be an ordered field.
The positive convex cone of T" is simply its positive elements. We denote this cone by I'*".
The nonnegative convex cone of I" is the union of its positive elements with 0. We denote this cone by I'>¢.

From this definition, we observe that N =Q x>0 NZ and N** =Q* NZ.
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ORDERED FIELDS: CAUCHY SEQUENCES

Throughout this subsubsection, let I" be an ordered field. We denote the absolute value on ' by | - |.

DEFINITION 1.67. Denote by I'" the positive elements of T.
A sequence (xn)n C T'is Cauchy if forany ¢ € I'" thereisan N € N such that
n,n’ >N implies [xn —xn| < €.

Denote by k(I") the set of all Cauchy sequences on I".

Because I' is an ordered field, we may add and multiply sequences with entries in I pointwise,

i.e. by adding or multiplying their terms together.

ProrosITION 1.68. K(T") Z5 closed under addition.

Proor. Let (an)n, (bn)n € k(I'),andlet € > 0. Then £/2 > 0 as well, so there exists N4 such that for all
n,n’ > N we have
‘an - an’l < 5/2)

and an Ny, such that for allm, n’ > Ny, we have
[bn —bn/| < g/2.
Let N = max({Ng, Np}). Then by the triangle inequality,
[(an +bn) — (an +bn/)| <lan —an/|+1bn —bn/l<e/2+¢€/2 =g,

so(an +bn)n € k(T). [ ]

PROPOSITION L1.69. If (X )n is Cauchy, then there isan M. € T such that
xnl <M

for all nonnegative .

Proo¥. Let ¢ = 1. Then there exists an N such that for all myn > N we have [x, — x| < 1. Let M =
max({[xoly ..., xn[}) + 1. Cleatly [xn| < M foralln < N. Now supposen > N. Then

Pnl = xn —xn +XN| < X —xNT+ XNl <M

so in all cases (Xn )n is bounded by M. [ |
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PROPOSITION 1.70. K(T") is closed under multiplication.

PrOOF. Let (an)n, (bn)n € k(T'). By the previous proposition, there exist Mq € I'" bounding (an )n, and
My, € T'* bounding (by )n. Lete € T'F sothat A = m € 't aswell. Since (an )y is Cauchy, there exists
N € Nsuch that foralln,n’ > N, we have [an, — an/| < Aandalso Ny, € N such that forall i, n’ > Ny,

we have [b,, — by /| < A. Pick N = max({Ng, Np}). Then
|anbn - an’bn’| = |anbn —anbn +anbn — an’bn’|
< |an||bn - bn’| + |an - an’an"

<AMq+ Myp) =c.

Thus, (anbn)n is Cauchy. [ |

DEFINITION L.71. Say that (an )n € K(I') tends to zero if for every ¢ € I'" there is some N¢ € N such that
forallm > N, we have |a,| < ¢.

Say (an)n ~3 (bn)n if (an — by )n tends to zero.

PROPOSITION 1.72. The Canchy sequences tending to zero form a maximal ideal of k(T).

Proor. The idea is once one throws in a Cauchy sequence tending toward some nonzero number (say 1), one
can then scale that Cauchy sequence by any number 1 € T to get a Cauchy sequence tending toward 7. |

CoMPLEX NUMBERS: ABSENCE OF ToTAL ORDER

Suppose it were possible to impose a total order on C. Then every nonzero element of C would be either positive
or negative. Let’s check i, the imaginary unit. Suppose i were positive. Then i > 0. But positive numbers form a
convex cone, i.e. if one squares a positive number, it ought to stay positive. However, iZ = —1 < 0. Now suppose

i were negative. Then —i would be positive. But squaring this supposedly positive number yields
(—i)? =(-1)?}* =¥ =—1<0.

Since we can’t even sort i as either positive or negative, there is no way we could sort all of C* into positive and
negative subsets. So even though the complex numbers are algebraically closed and contain the real numbers R as
a subfield, we do lose something when we go from R to C, namely the ability to compare any two elements in a
globally consistent way.

Though this is fairly obvious, it can lead to some bizzare consequences.

For example, in a real inner product space (see Chapter 3), a hyperplane basically bifurcates its complement into a
part that’s “above” the hyperplane and a part that’s “below” the hyperplane. For complex inner product spaces,
the complement of a hyperplane is actually simply connected. Thus, complex hyperplanes don’t have “sides:” if

they did, this would imply that C could be totally ordered!

Perhaps the reals aren’t so pathological after all.
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