

4NAND – Augmenting Logic with Imaginary Truth Values

Justin T. Chun ~ 5 January 2026

For G. Spencer Brown, who saw it first.

Consider the following table for an operator (we'll call it 4NAND):

\uparrow	\perp	\top	\dashv	\vdash
\perp	\top	\top	\top	\top
\top	\top	\perp <td>\dashv</td> <td>\vdash</td>	\dashv	\vdash
\dashv	\top	\dashv	\dashv	\top
\vdash	\top	\vdash	\top	\vdash

Note that the 4NAND operator \uparrow matches the binary NAND operator \uparrow on the set $\{\perp, \top\}$:

$$\perp \uparrow \perp = \perp \uparrow \top = \top \uparrow \perp = \top, \quad \top \uparrow \top = \perp.$$

Here are the tables for 4NOT, 4AND, and 4OR.

X	$\neg X$
\perp	\top
\top	\perp
\dashv	\dashv
\vdash	\vdash

\wedge	\perp	\top	\dashv	\vdash
\perp	\perp	\perp	\perp	\perp
\top	\perp	\top	\dashv	\vdash
\dashv	\perp	\dashv	\dashv	\perp
\vdash	\perp	\vdash	\perp	\vdash

\vee	\perp	\top	\dashv	\vdash
\perp	\perp	\top	\dashv	\vdash
\top	\top	\top	\top	\top
\dashv	\dashv	\top	\dashv	\perp
\vdash	\vdash	\top	\perp	\vdash

So \uparrow functions as a “real” NAND since the induced negation inverts \top and \perp but ignores \dashv and \vdash .

There is also an “imaginary” NAND whose induced negation inverts \dashv and \vdash but ignores \top and \perp .

Denote 4iNAND by $\hat{\uparrow}$, with \sim as 4iNOT, \sqcap as imaginary 4iAND, and \sqcup as imaginary 4iOR.

We make a fairly arbitrary choice of “orientation” by reasoning that \top must be to \dashv as \perp is to \vdash .

$\hat{\uparrow}$	\perp	\top	\dashv	\vdash
\perp	\perp	\dashv	\perp	\dashv
\top	\dashv	\top	\top	\dashv
\dashv	\perp	\top	\vdash	\vdash
\vdash	\dashv	\vdash	\dashv	\vdash

Here are the tables for 4iNOT, 4iAND, and 4iOR.

X	$\sim X$
\perp	\perp
\top	\top
\dashv	\vdash
\vdash	\dashv

\sqcap	\perp	\top	\dashv	\vdash
\perp	\perp	\vdash	\perp	\vdash
\top	\vdash	\top	\top	\vdash
\dashv	\perp	\top	\dashv	\vdash
\vdash	\dashv	\vdash	\dashv	\vdash

\sqcup	\perp	\top	\dashv	\vdash
\perp	\perp	\dashv	\perp	\dashv
\top	\dashv	\top	\top	\dashv
\dashv	\perp	\top	\dashv	\vdash
\vdash	\dashv	\vdash	\dashv	\vdash